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Semi-Direct Product of

Edge Colored Graphs

Charlie O’Connor
Advisor: Dr. Tom Sibley

Abstract: A distance can be defined on a complete graph, called an edge colored graph.
Edge colored graphs have many properties; however, this paper is mostly concerned with
homogeneity and algebraic properties of edge colored graphs. This paper defines a semi-
direct product of graphs, similar to a semi-direct product of groups. A semi-direct
product of graphs is based upon similarities of the graphs that compose it. This paper
also investigates the homogeneity of the semi-direct product, and the groups of isometries
of semi-direct products in certain cases.
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Previous students have classified all edge colored graphs that are two-point
homogeneous and have 12 or fewer vertices. Previous students have built graphs from
smaller graphs using direct and wreath products. These products have helped students
classify graphs, but they have not been enough. We define a new product of graphs, a
semi-direct product for graphs, similar to the semi-direct product for groups. We prove

that given necessary conditions this product is edge-homogeneous. We also describe and

classify the isometries of certain products.

Definition: An edge colored graph is a complete graph G(V, E) with loops where a
coloring function € maps the edges of a graph to a set of colors: For all vertices
a, b € V, the edge {a, b} is mapped to a color €(a, b) defined by a coloring

function €. Denote the set of colors for G(V, E) by €(G). The colors may be
interpreted as distances in a graph.

Definition: The bijection a:V — V is an isometry if and only if for all a, beV,
€(a, b) = €(a(a), a(b)). Denote the set of isometries for G(V,E) as KG).

Definition: A graph G(V, E) is one-point homogeneous if and only if forall a, b € V,
there exists an isometry o e I(G) such that a(a) =b.

Definition: An edge colored graph is two-point homogeneous when for all a,bc din
V, if €(a, b) = €(c, d) there exists an isometry a € I(G) such that a(a) = ¢ and
a(b) =d.

It is possible to build two-point homogeneous graphs from regular polygons,
regular polyhedra and the Petersen graph. In general, a set of vertices in a metric space
gives an edge colored graph by using the distance function as the color function. For
example, a regular hexagon can be colored with four colors, as shown below (the fourth
color is from a point to itself, and is the clear color in the picture). We call this graph Cs.
The hexagon has 12 isometries, which form the group Ds. With this coloring scheme, Cy

is two-point homogeneous. For example, the edge connecting the points 0 and 1 can be
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mapped by rotation to the points 1 and 2. And a mirror reflection maps the points 0 and 1
to the points 2 and 1. In a similar way, any pair of points connected by one color can be

mapped to any other pair of points connected by the same color.

Figure 1

Here are other examples of two-point homogeneous graphs.

C; Cs Cs Cs

K5 K7 C3 = K3
Figure 2

Definition: Let K, denote the family of graphs with n vertices where the only two colors
defined are one color from a point to itself (the clear color) and the other color is

between any two distinct points.
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Definition: Given a group H, define an “absolute value” on H as a function fromHto H
by [a] = [b] if and only if a = b or b = a™. Define d(a, b) = a*b"'|. A graph is
derived from a group in the following way: K is the set of vertices and €(K) is
the set of colors of K defined by €K) = {la a € K} where
€(a,b)=d(a,b) = |a*b'1| and * is the operation on K.

In Cs, for example, we label the vertices with elements from Zs. From this
definition, €(0, 1) = €(0, 5) since 1 and 5 are inverses. €(4, 2) = |4 -2| = 12|. So,
€(4, 2) = €(0, 2), since both sets of points are 2 away from each other. In a similar way,
all the colors of Cg are defined. Similarly, the family of graphs derived from the family

of Z, groups is denoted C,.

Figure 3

Another example is the graph shown above. This graph is derived from the group
Ds. The red lines correspond to elements that are R1 apart (or R2 apart since R1 and R2
are inverses). The black line corresponds to elements M1 apart. Notice that
d(I, M1) = d(R1, M2) = d(R2, M3). In the same way the blue lines correspond to
elements M3 apart, and the green line to elements M2 apart. In this way, groups give rise
to edge colored graphs.

Definition: A direct product of two graphs, denoted A x B, is a complete graph on
vertices V = {(a, b): a € A, b € B} together with a coloring function €. The
coloring function, €(A x B), is based on the coloring functions of A and B. The
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color from the point (ay, b;) to (az,bz) is €((a1, by), (a2, b2)) = (€(ay, a2), €(b1, b)),
where €(a;, a2) is a color in €(A) and €(b;, b,) is a color in €(B).

The colors of the new graph are based on the colors of the two original graphs,
but they are new colors. Direct products may be used to build new graphs. For example

the following is the direct product of C; with Cs, a graph with ten vertices.

(0.0

C2 xCs
Figure 4

C, x Cs has two identical pentagons connected to each other in the same manner
that (0, 0) is connected to the inner pentagon. C;x Cs is one-point homogeneous; which
means all vertices look identical in C; x Cs, even the points on the inner pentagon; or

there exists an isometry that maps any point to any other point.

Definition: Let G, H be edge colored graphs. A graph isomorphism y:G — H is a one-
to-one onto mapping that preserves color. That is, for all a, b, ¢, d € G if
€(a, b) = €(c, d) then €(y(a), w(b)) = E(¥(c), (d)) and if €(a, b) # €(c, d) then
€(y(a), (b)) # €(y(c), w(d)). This means the same colors get mapped to the
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same color and different colors get mapped to different colors.

Note that C; x Csis isomorphic to Cs x C,. It is also isomorphic to Cio. However
this is not always the case. For example C3 x C; is not isomorphic to Co. C; x C3
(pictured below) has four colors. Cs has five colors. Also, the direct product of graphs
and groups do not correspond. For example, the graph derived from Z; © Z; (pictured

below) is not isomorphic to C3x Cs, even though Csis derived from Z;.
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Figure §

With graphs of ten vertices or more, there exist graphs that are not in any
previously described family of graphs, nor are they direct products of smaller graphs, nor
are they derived from groups. The Petersen graph is the smallest such two-point
homogeneous graph (Figure 6). However, it is a ‘collapse’ of the graph next to it, what I
will call the pre-Petersen graph. By collapse, I mean that if certain colors of the pre-
Petersen graph are grouped together and considered one color, the pre-Petersen graph
would become the Petersen graph. The pre-Petersen graph is not two-point

homogeneous. It is however ‘edge homogeneous’, which we now define.

Definition: A graph is edge homogeneous if it is one-point homogeneous and for all
a, b, c,d € Vif €(a, b) = €(c, d) then there exists an isometry o € I(G) such that
either a(a) = ¢ and a(b) = d or o(a) = d and a(b) =c.

Edge homogeneity is weaker than two-point homogeneity. In the pre-Petersen
graph the edge between (0, 0) and (1, 4) can only be mapped to the edge between (0, 0)
and (1. 3) if (0, 0) is mapped to (1, 3) and (1, 4) is mapped to (0, 0). A necessary
condition for a graph to be two-point homogeneous is the existence of an isometry that
maps (0, 0) to (0, 0) and (1, 4) to (1, 3). However, there exists no such isometry for the

pre-Petersen graph.
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Petersen pre-Petersen
Figure 6
The Petersen graph has three colors: the color of the edges shown, the color from a point
to itself and all other points are connected by the third color. In the pre-Petersen graph
there exists an isometry that maps (0, 0) to all other vertices on the outer pentagon. To
imagine the rest of the edges, just rotate (0, 0) around to all the vertices on the outer

pentagon. I refrain from drawing in all the edges to keep that the graph readable.

Definition: A bijection ¢ on V is a similarity if and only if for all a, b, ¢, d € V if
€(a, b) = €(c, d) then €(p(a), ¢(b)) = €(p(c), ¢(d)). Define ¢*: €(G) — €(G) by
9*(€(a, b)) = €(p(a), ¢(b)). Denote the similarities of a graph G(V, E) by S(G).
In other words, a similarity is a permutation of the vertices that induces a

permutation of the set of colors of a graph.

In the pre-Petersen graph the outside layer is a copy of Cs while the inside layer is a copy
of a similarity of Cs. The graph in figure 7 and 8 is another example of a product where
the inside layer is a copy of a similarity of the other layers. The graph is split up, one
picture depicting the colors within a layer, the other depicting the colors between layers.
This split keeps the graph readable. To image the graph with all its colors, superimpose
one over the other. This graph is composed from C; and C;. Each layer looks like C7. A
similarity transforms each layer into the next layer. The second diagram depicts the

colors between the layers.
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Notice that the inner most layer is one layer away from the outermost layer
because of the structure of C;. I have only drawn in the connecting colors from a few
points. To fill in the rest of the edges rotate the graph in your mind.

The pre-Petersen graph and this 21-vertex graph are examples of ‘semi-direct
products’ for graphs. I will now define the coloring scheme for a semi-direct product for
graphs and describe all isometries of these graphs. First, I will describe the semi-direct
product, denoted >4, of C; with certain graphs. Then I will describe the semi-direct

product of C, n > 2 with certain graphs. I split these up into two categories because C;

generates a different coloring scheme than C, n> 2

Define C; >, B
Definition: For two-point homogeneous graphs B, a semi-direct product, denoted
Ca > B, 1s defined when ¢ € S(B)and p 0 ¢ = ¢’ € I(B). C; >4 B is a complete graph

with vertices V = {(a, b): a € C;and b € B} together with a coloring function €.

Before we define the coloring function, we define a set of equivalence classes of

colors under ¢.

Definition: The set of equivalence classes under ¢ by C(B) = {[ci]: ci € €B)} and
[ci] = {ci, @(cp)}..

Since @ is a similarity it permutes colors; since @ is an isometry, @ is a 2-cycle
permutation, which means it switches two colors. C(B) is a set of equivalence classes
where each equivalence class has a color c; and the color with which ¢ permutes ci, @(c;).
For example, Cs has three colors (figure 2), the clear color and two other colors which ¢
permutes; then C(Cs) has two elements, the equivalence class consisting of the clear color

and the equivalence class consisting of the other two colors.

Definition: The coloring function € maps edges of C; >, B to colors in the following

way:
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€((a1, by), (a2, by)) = (0, €(¢" (by), ¢ (b2))) ifa;=a=k
(€(a1, az), 0) if aaFa and b, = b2
(€(a1, a2), C(b1, bz)) if a #a and b1 b b2

With reference to the pre-Petersen graph, which is C, 1>, Cs, this coloring scheme

is broken up into three components based on the stated conditions. The first component
is coloring edges where the endpoints of the edge are in the same layer. Each layer is a
transformation by a similarity of the previous layer. These are the colors of the B graph.
The second and third components deal with coloring edges connecting layers. The
second component consists of the non-clear color of C;. Each point has exactly one edge
of this color in the semi-direct product. In the pre-Petersen graph (figure 9), the second
component is the red edge. The third component also describes how to connect layers: If
by # by, then colors are defined by equivalence classes. In the pre-Petersen graph (figure
9) the edge from (0, 0) to (1, 4) has the same color as the edge from (0, 0) to (1, 3) since
in Cs, €0, 4) = @(€(0, 3)). We need to define the colors in terms of the equivalence

classes in order for the graph to be edge homogenous. If these edges were not the same

pre-Petersen

Figure 9

color then the graph would not be one-point homogenous. For example, if we mapped
(0,0) to (1, 0) by an isometry, (1, 0) is forced to go to (0, 0) since there is only one red
edge connecting them. The (1, 4) would be get mapped to (0, 3) or (0, 2) since it is
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connected to (1, 0) by a blue edge. With out loss of generality, say it is mapped to (0, 3).
Then (1,3) is forced to go to (0, 1) since it is connect to (1, 0) by a black edge and (1, 4)
by a blue edge. Other points follow similarly and we obtain the picture below (figure
10). We can then rotate the graph to obtain the graph on the right in figure 10. Notice
the edge from (0, 0) to (1, 3) is in the position that were originally occupied by (1, 4) to
(0, 0). This example shows that if we want the semi-direct product to have even one-

point homogeneity €((), 0), (1, 3)) = €((0, 0), (1, 4)). Therefore, the colors between

layers depend upon equivalence classes of colors.

Figure 10

Also note, ¢' o ¢'(a) = ¢"*(a) does not necessarily equal (p(j”‘)“md 2 (a), but
(9™ (@), ¢ b)) = €T (a), U™ ? (b)). This means that o' and ¢ are both
similarities and even permute colors the same way, but they may be different similarities
because they may map the same vertex to different vertices.

Define y:Cz > B — C; > B by v(a, b) = (a(a), 9T (b)), where ¢* € S(B) and a.is
a rotation in I(C; ) given by a(a) = (a + p) mod 2 = m, where p € Z and m € Z,. Where

m = 0, y maps points to the same layer. Otherwise, y maps points to another layer.

Claim 1: vy is an isometry of C; >4 B.
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I will divide the proof up into three cases, corresponding to the three components of the

coloring function. Recall from the definition of an isometry, y is an isometry if and only
if €(y(a1, by), Y(az, b2)) = €((ay, b1), (az, b)) in each case.
Case 1: a; =a; =k, 50 €((ay, by), (az, bs)) = (0, €(9" (b), ¢* (b2))).
€(y(as, by), ¥(22, b2)) = €((a(a), 97 (b1)), (0fa2), 97 (b2)))
= (€(a(ay), a(2z)), €(@™ 0 97 (br), ¢™ 0 ¢ (b)),
since m = a(a;) = a(az) = (k + p) mod 2,
= (E(a1, @), €@ P ™2 0 ¢ (by), 9% TP™? 0 ¢ (b)),
since o is an isometry,

= (€(a1, 22), € P 0 9™ (b), 9“ P 0 9P (b)),
by properties of ¢,

= (€(ay, @), €(¢* """ (be), ¢* PP (b2)))
= (€@, 22), €(¢° (b1), 9" (1))

= (€(a1, a2), €(9“(by), ¢“ (b)),
since a; = a, =k,

= (0, €(¢" (by), ¢“ (b)),

since a; = a,
= €((a, by), (az, b2)).
Case 2: a; #a, and by = by, s0 €((ay, by), (a2, b2)) = (€(as, az), 0).
€(v(as, br), ¥(az, b2)) = €((ax(ar), 97 (b)), (a(a2), ¢ (b))
= (€(a(ar), afaz)), 0),
since b; = byimplies ¢ (b1) = @7 (b2),
= (€(ay, 2), 0),
since a is an isometry,
= €((a1, br), (a2, b)),
Case 3: a;# a; and by # by, so €((ay, by), (a2, b2)) = (€(ay, a2), C (b1, b2))
€(1(a1, ba), 722, b2)) = €((a(ar), 9™ (b1)), (0(22), ¢ (b2)))
= €((a(a), 9™ (bn), ((az), 9™ (b2)))

™
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= €((0(a1), @' (b)), (a(22), ¢" (b2))) or €((a(ar), by), (o(az), b2))
But both of these options equal (€(a(a1), a(az)), C(b1, b2)),
= €((a1, by), (a3, b)),

Hence, y preserves color and consequently it is an isometry. m

Next define 6:C; >y B — C; >4 B by 8(a, b) = (a, B(b)), where € I(B). Where y

maps points to another layer, 8 maps points to other points on the same layer.

Claim 2: 6 is an isometry of C; >4, B.

Case 1: a1 =a, =k, 50 €((ay, by), (a2, b2)) = (0, €(¢" (b1), ¢ (b2))).
€(8(a1, br), 8(az, by)) = €((a1, B(b)), (22, B(b2)))
= (€(ay, a3), €(¢“0 B (br), 9“0 B (b)),

sincea;=a; =k

= (€(a1, a), €(9" (ba), 0" (b2))),

since P is an isometry, it preserves color
= €((a1, by), (a2, bo)).
Case 2: a; #a; and by =b;, s0 €((ay, by), (az, bz)) = (€ (ay, a2), 0).
€(8(a1, br), 8(az, bz)) = €((as, B(b1)), (22, B(b2)))
= (€(a1, 2), 0),
since B(b1) = p(bz),
= €((a1, by), (a2, b2)).
Case 3: a; #a; and by # by, so €((ay, by), (az, b)) = (€(ay, &), € (by, by)).
€(8(ar, b), 8(az, b2)) = €((a1, B(br)), (a2, B(b2)))
= (€(a1, a2), C(B(by), B(b2)))
=(€(a1, @), C (b1, b)),

since P is an isometry,

= €((a1, by), (a2, b2)).
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Hence, & preserves color and consequently it is an isometry. =

We have shown that y and 3 preserve color on C; &>, B and are therefore isometries.

Define C, >, B

We now consider C, > B, for n > 2. We consider the same bijections vy, & and

show they are isometries.

Definition: For a two-point homogeneous graphs B, a semi-direct product, denoted
C. Do B, is defined when ¢ € S(B) and ¢" € I(B). C, >, B is a complete graph with
vertices V = {(a, b): a € C,and b € B} together with a coloring function €. The

coloring function € maps edges of C, >4 B to colors in the following way:
€((a1, by), (22, b2)) =(0, €@ (1), ")  ifa =2~k
= (€(a1, ), 0) ifa; # a; and b; =b,
= (€(a1, &), €(9" (b1), 9“ (b))
ifa; # a; and by #b; where [a; — a;| =jandi=n -},

where k =a; ifj<iork=ayifi<].

Notice the first two components are the same as for C; >4 B. The third component arises

from the structure of C,. Recall that we derived C, from the group Z,. Ifi <}, a; and a,
are 1 apart rather than j apart.

Also note, ¢' o ¢'(a) = ¢/ (a) does not necessarily equal ¢™™™ ® (a), but
€(¢™ (a), o™ (b)) = €(F™™" (@), ¢I*™® (b)). This means that ¢ and ¢*" are both
similarities and even permute colors the same way, but they may be different similarities

because they may map the same vertex to different vertices.

Define y:C, > B — C, >4 B by ¥(a, b) = (a(a), ¢ (b)), where o. is a rotation in
I(C,), 9P € SB) and a(a) =(a + p)mod n=m, where p € Zand m € Z,.
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Claim 3: vis an isometry of C, >, B.

Case 1: a1 =a, =k, 50 €((ay, br), (a2, b2)) = (0, €(@" (by), ¢* (b2))).
This follows from case 1 in the proof for C, &>, B since the coloring is the same.
Case 2: a; # a; and by = by, 50 €((a1, by), (az, b2)) = (€(ay, a2), 0).
This follows from case 2 in the proof for C; &>, B since the coloring is the same.
Case 3: a; # a; and by # by, s0 €((ay, by), (a2, b2)) = (€(a1, a2), €@ (b1), P* (b2))).
Sub Case i: j<i, so k=a;. Then ofa;)=(k +p) mod n=m.
€(y(as, br), v(a, b2)) = €((aa1), 97 (br)), (a(a2), 9™ (b2)))
= (€(a(ar), o(a2)), €(¢™ © ¢ (br), 9™ 0 9™ (b2)),

since oa;) = (k + p) mod n=m,

= (€(a, 22), €@¥ D™ "0 ¢ (by), ¢* V™" 0 7 (b2)),
since o is an isometry,

= (€(a1, ), €% P 0 ¢” (br), 9“7 0 ¢7 (1))

= (€, 22), €(¢* (b, ¢ (b))

= €((a1, by), (a2, b2)).

Sub Case ii: i<j, so k=a;. Then a(az) =(k+ p) mod n=m.
€(y(a, b), Y(az, b2)) = €((aar), 97 (b1), (@(a2), 97 (b2))

= (€(a(ar), a(22)), €™ 0 7 (b1), 9™ 0 97 (b2))),
since o(az) = (k + p) mod n=m,

= (a1, a2), €@ V™0 ¢ (by), 9P 0 ¢7 (b)),
since @ is an isometry.

= (€(a, a2), €@ P 0 9® (bn), 9“"P © 9™ (b))

= (€(a1, 22), €(@" (b), ¢ (52)))

= €((a1, b1), (a2, b2)).

Hence, y preserves color and consequently it is an isometry. m
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Now consider the bijection 8, as defined above, which maps points to other points

on the same layer.
Claim 4: § is an isometry of C, >4 B.

Case 1: a; = a2 =k, 50 €((ay, by), (a2, b2)) = (0, €(@" (b1), ¢* (b2))).
Same as Case 1 for C, >, B proof since the coloring is the same.
Case 2: a; # a, and by = by, s0 €((ay, by), (az, b2)) = (€(ay, 22), 0).
Same as Case 2 for C; >, B proof.
Case 3: a1 # a and by # by, s0 €((ay, by), (a2, b2)) = (€(ay, 2), €(¢* (by), ¢* (b2))).
Sub Casei: jB1i,sok=a.
€(8(a1, by), 8(az, b)) = €((a1, BbL)), (@2, B(52)))
= (€(a1, &), €(¢* 0 B(by), ¢° © B(b2))),

since a; =k,

= (€(a1, 22), €(¢" (br), ¢* (b)),

since P is an isometry, it preserves color,
= €((ai, br), (a2, b2)).
Sub Case ii: 1<j, so k=a.
€(8(a, by), 8(az, b)) = €((ar, B(b)), (22, B(b2)))
= (€(a, 22), €(9° © B(by), 9“0 B(b2))),
since a; =k

= (€(a1, 22), €@ (b1), 9°(B2)),

since P is an isometry, it preserves color,

= €((a1, by), (a2, b2)).

Hence, § preserves color and consequently it is an isometry. =
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Thus far, we have defined a semi-direct product for graphs and described some
isometries of C, >y B n > 2. We will prove the semi-direct product of two graphs is

edge-homogeneous.

Lemma 1: For a two-point homogeneous graph B, where ¢ € S(B) and ¢" € I(B) for
n>2. In Cy,by Bif €((a, b), (%, ¥)) = €((a, b), (x, 2)), then there exists an
isometry o, such that o(a, b) = (a, b) and o(x, y) = (X, ).

Proof. Assume (€(a, x), €(b, y)) = (€(a, x), €(b, z)). So, €(b, y) = €(b, z). Since B is
two-point homogeneous there exists p € I(B) such that f(b) =b and B(y) =z. Thenlet
be defined by o(m, n) = (m, B(n)), which is an isometry from above Claim 2 and 4. Then
o(a, b) = (a, B(b)) = (a, b) and o(x, y) = (x, B(¥)) = (X, z). Thus proves the lemma. =

Theorem 1: For a two-point homogeneous graph B, where ¢ € S(B) and ¢" € I(B) for

n>2. C, >, B is edge homogeneous.

Proof: First, C, > B is one-point homogeneous because y maps a point to any layer and

& maps a point to any point within the same layer. So, under the composition of these

two, a point (a, b) can be mapped to any other point in the graph. Since C, >4 B is one-
point homogeneous, it suffices to show that each edge from (0,0) can be mapped to all
other edges of the same color from (0, O). Also note that
€((a1, by), (az, b2)) = €((az, b2), (ar,b1)). I will split up the proof into three cases, each
case corresponding to the three parts of the coloring function of the semi-direct product
of graphs.

Assume €((0, 0), (a, b)) = €((0, 0), (x, y)). For each case I will show that there
exist an isometry that maps the edge ((0, 0), (a, b)) to the edge ((0, 0), (x, y)). Since the
graph is one-point homogeneous, this will prove the graph is edge homogeneous.

Case 1: a=x=0,b=0and y=#0. This case corresponds to edges connecting

(0, 0) to other vertices in the same layer‘,.,;,Since B is two point homogeneous, there exists
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B e I(B), such that B(0) = 0 and B(b) =y. Then, let y(u,v) = (u, B(V)), which is an
isometry by Claim 2 and 4. So, y((0, 0)) = (0, BO) = (0, 0) and
y((a, b)) = (a, B(b)) = (%, y), since a = 0. So y maps (0, 0) to (0, 0) and (a, b) to (x, y).
Therefore every edge from (0, 0) to another vertex on the same layer can be mapped to

every other edge the same color from (0, 0).
Case 2: a#0,x=0and b=y =0. In the graph C; >, B there is only one edge
from (0, 0) with the color (€(0, x), 0) and the identity maps this edge to itself. In

Ca > B, for n > 2, there are at most 2 edges this color from (0, 0), when (2, b) # (x, y)
buta+x=mn ora=n-x Leto((0, 0)) = ((0), 0) = (x, y) where a is a rotation in C,
given by a(0) = (0 + p) mod n. Then p mod n = x. Then o((a, b)) = (a(a), b) =
((a+ p) mod n, 0) = ((n— x + p) mod n, 0) = ((n mod n—x mod n + p mod n) mod n, 0) =
((0 —x + x) mod n, 0) = (0, 0). So o maps (0, 0) to (x, y) and (a, b) to (0, 0). Therefore
every edge from (0, 0) to another vertex on a different layer (with the second component
of the ordered pair being the clear color) can be mapped to every other edge the same
color from (0, 0).

Case3: 0#a,0#b,0=x,and 0 #y. If 1 fixes (0, 0) and maps (a, b) to (x, y)
then we are done. So assume no such 1 exists.

First, consider C, >, B only. Then a =x = 1. Also, let y map (0, 0) (x, y) be
given by y((0, 0)) = (a(0), 9™(0)) = (x, y), where ¢ € S(B) and p is an odd number, since
o is a rotation such that a(0) =1. We also assumed that €((0, 0), (1, b)) = €((0, 0), (1, y)),
which means that (€(0, 1),C(0, b)) = (€(1, 0),C(y, 0)) and then C(0, b) = C(y, 0). This in
turn means that €(0, b) = €(0, y) or €(b, 0) = €(¢(0), ¢(y)) from the coloring definition.
If the first is true then by the lemma there exists f € I(B) such that f(0) = 0 and f(b) =y
and so 7((0, 0)) = (0, 0) and t((1, b)) = (1,B(b)) = (L,y). However, we assumed that no
such 1 existed, so €(b,0) = €(¢(0), ¢(y)) must hold. We saw that ¢?(0) =y. We want
¢®(b) = 0, but it is conceivable that ¢P(b) = z, where z is some other point not equal to 0.
In fact, suppose @®(b) = z is true. Then €(b, 0) = €(¢(2), ¢(y)) because ¢* is a
similarity and p is odd; then €(¢(0), g(y)) = €(¢(2), ¢(y)) and so €(0, y) = €(z, y)
because @ is a 2-cycle permutation of colors. Then from the lemma, there exists § € I(B)

such that B(z) = 0 and P(y) = y and so there exists & such that o((0, z)) = (0, B(2)) = (0, 0)
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and o((1, ¥)) = (1, B(¥)) = (1, y). Then coy((0, 0)) = o ((1, y)) = (1, y) and
6 o w((1, b)) =06 ((0, z)) = (0, 0). Then o oy maps (0, 0) to (x, y) and (a, b) to (0, 0).

Next consider C, > B, for n > 2. Remember from the definition of colors that
j+i=n Say|0-a]=j If|0-x|=jthena=j=xand let y(uv) = (u, P(v)) where
B e I(B) such that B(0) = 0 and B(b) =y. Then y((0, 0)) = (0, 0) and y((a, b)) = (x, y).
So assume |0 — x| =i, then a =n - i. Let y((0, 0)) = (a(0), ¢(0)) = (x, y), where
a(0)=0+imodn=i Thena(a)=j+imodn=nmodn=0. Wewant ¢*(b) =0, but it
is conceivable that ¢'(b) = z, for some z # 0. Assume ¢'(b) = z, then
v((a, b)) = ((a), ¢"(b)) = (0, z). The lemma guarantees that there exists a § € I(B) such
that f(z) = 0 and B(y) =y. Then there exists o such that o((0, z)) = (0, p(z)) = (0, 0) and
o((x, ¥)) = %, B(¥) = (x, y). So o oy(0, 0) = o((x, y)) = (x, y) and 6 o y((a, b))
= 6((0, z)) = (0, 0). Then ¢ o y maps (o, 0) to (x, y) and (a, b) to (0, 0).

Similarly, let |0 —a| =i. If|0 — x| =i then there is obviously an isometry that maps
(a, b)to (X, y). Soassume [0 —x|=j. Thenx=j=n-i=n-a. Pick o as above so
o(0) = x and a(a) = 0. We want ¢'(b) = 0, but it is conceivable that a z exists such that
(p'i(b) =z. Assume cp'i(b) = z; since (0, 0) and (0, z) are on the same layer, by the lemma
pick B € I(B) such that f(z) = 0 and P(y) = y. Then there exists ¢ such that
o((0, 2)) = (0, B(2)) =(0, 0) and o((%, y)) = (%, B(¥)) = (x, ¥). Soc 0o y((0,0)) =0 ((x,y))
= (x, y) and 6 o y((a, b)) = ¢ ((0, z)) = (0, 0). Then ¢ o y maps (a, b) to (0, 0).

Therefore, C, >, B is edge homogenous foralln>2. m

We have already described some isometries of a semi-direct product of two

graphs. Next we will classify the group of isometries for certain products, namely C, >,

C, for p prime and n = (p-1)/2.

Definition: Let K be a group and H be a subgroup of Aut(K). A semi-direct product, H

> K, is defined on H x K by (hy, ki)( bz, k2) = (h; o hy, k; o hy(ks)) [1, p 99].

&3

N
Theorem 2: For all odd primes p, U(p) > Z,~ S(Cp) ~ I(C, >4 Cp), where n = (p-1)/2.
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Proof: Let s', (x) = a’x mod p and r (x)=j + x mod p for some i, j € Z,, a € U(p) and
la| = p-1. Since s, is a similarities and r is an isometries, the set generated by s, and r,
<s,, >, is a subgroup of S(Cp). I will first show <sy, "> is isomorphic to U(p) > Zy, then
I will count elements and show <s',, "> equals S(Cy).

Let n(s, o ¥ (x)) = (&', a}), where a, i, j € Z,, a € U(p), so @, aj) € U(p) > Z,
For 1 to 1, let 1](sia or (x)) = (s, o " (x)). Then (@, a}) = (@, a*h) = a' = a“and
alj=a%h =>i=kandj=h. Thus, nis 1to 1. For onto, let (m, n) € U(p) > Z,. Since
U(p) is cyclic there exists an element a € U(p), of order p-1, and i € Z; such that a'=m.
Since Z, is a field there exist j € Z, such that aj = n. For these i, j clearly
n(sia or(x)= (@, aij) = (m, n). Therefore, 1 is onto. Before operation preservation, note
how similarities and rotations can switch. Given s%, or’ (x), pick z = avy.
ros.(x)=z+a"xmod p=a"y +a"x mod p=a"(y + x) mod p=s", o’ (x). Now, for
operation preserving: (s, o ' (x)) n(s%. o * (¥)) = (@, a§)(@", ah) = (""", a"**h + ) =
@ a*h + jaY) = nE™ oK) = nE. osh o I* orf) =
n(sh, o1 o s5 or'(x)) because z = a* * j/a* =j, w =k and y = j. So, 1 is operation
preserving. Then, <s',, >~ U(p) > Z, and <sly, B> =| U(p) > Zy| = p(p-1).

In S(C,) for any i |orbscp)(i)| = p, since any point can be mapped by a similarity to
any other point. Fix one point, 0. Each color in C, has p edges because of the definition
of coloring function for C, and the fact that p is an odd prime. In addition, since
similarities are permutations of colors, a similarity maps each color to another color.
Therefore, a point adjacent to 0, call it 1, can be mapped by a similarity to any other point
except 0. Once 0 and 1 are fixed, the color between them is determined. Next, consider
the other point adjacent to 0, call it 2. Since similarities map colors to colors and
€(0,1) = €(0, 2), 2 is also fixed. In a similar way, all other points are fixed once two
points are fixed. Refer to the graphs of C; and C; for examples. Consequently,
stabg(cp)(i)l = p-1. By the Orbit-Stabilizer Theorem, | S(C,)| = p(p-1). Then <s\, P> isa
subgroup of S(C,) with the same numbbr 'of elements, so <s,, r> = S(Cp). Then

U(p) > Z,~ S(Cp). All we have left to show is that S(Cp) = I(C,, >4 Cp).
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By Claims 1-4 y(a, b) = (a(a), ¢ (b)) and &(a, b) = (a, P(b)) are isometries of
C. > Cp (recall 9™e S(Cp) and a is a rotation in I(C,) given by a(a) = (a + q) mod n=m,
where p, m € Z and B € I(C;) = D,). Since the rotations are a subgroup of Dy,
5(a, b) = (a, (b)), where B is a rotation of C,, is also an isometry. Then each
y 0 8= (a, 0 B) is an isometry of I(C, >, Cyp).
Let n(sh or (x)) = (&, sa oF ) =y 08, where afa) = (a + i) mod p and
s, o' € S(C,) with s and r as above. For 1to 1: let n(s’, o ' (x)) = (s, o ' (x)). Then
(0, s20)=(0g, s 0") = 5= ap=>i=kandj=h. So,7nis1to 1. For operation
preservation: (s, or (X)) (s orff ) = (o, s O ) (m s o) =
(@ s o P o s or), where a(a) = (a + i + k) mod p = oy( ax(x)). And
01(x) = (x + i) mod p and az(x) = (x + k) mod p. Let m = j/a“ or j = ma*. Then
(@ so o osh o) = (o, sh o & orf* o) = G, oMK) =
11(sia os, 0o r'(x))=nG.orfos 0 IJ](X)) because z = a* * jfa*=j, w=kand y=j.

Therefore, n preserves operation. For onto: since C, &>, C, is one-point homogenous,

lorby ca e cp)()] = pn = p(p-1)/2. Fix the point (0, 0) and consider a point adjacent to it on
the same layer, (0, 1). Since edges within a layer have different colors than edges that
cross layers an isometry can only map (0, 1) to points within the 0 layer. And since each
layer looks like C,, there are only two isometries that fix (0, 0), the identity and a mirror
reflection. Now consider a point adjacent to (0, 0) but on a different layer, (1, 0). If
n = 2, there is only one edge of this color from (0, 0), so (1, 0) is fixed. If n> 2, there are
only two edges this color from (0, 0) the edge ((0, 0), (1, 0)) and ((0, 0), (n-1, 0)).
Nevertheless, it is impossible to map (1, 0) to (n-1, 0) while leaving (0, 0) fixed because
our isometries y o & = (o, ¢ o B) consist of only rotations is the first coordinate, so if

(0, 0) remains fixed, so does (1, 0). Similarly, all other points are also fixed and so the
|staby ca ppcp) ()] = 2. By the Orbit-Stabilizer Theorem [I(C, >, Cp)| = p(p-1). Thus, 1) is
onto because it is 1 to 1 and the two groups are equal in size. Therefore,

S(Cp) # I(Cy 1> Cp). Thus, the entire claim is true. m
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We have defined a semi-direct product for edge colored graphs and proved they
are always edge homogenous. We have also classified the isometries for certain graphs.
Classifying the isometries for all semi-direct products is a difficult task. The next easiest
step would be to look at all graphs derived from finite fields, of which the C, graphs are
the most basic. We can represent the isometries of a Cp graph by one-dimensional affine
transformations. In general, we can represent the isometries derived from the group
GF(p") by n dimensional affine transformations. However, the affine transformations do
not completely classify all isometries since some isometries are not linear. Some of these
nonlinear isometries maybe related to automorphisms of GF(p"); consequently, I believe
there is an elegant structure underlining the isometries of graphs derived from finite
fields. I also suspect the isometries of a semi-direct product involving graphs derived
from finite fields is related to the similarities of graphs derived from finite fields, as
theorem 2 demonstrated for GF(p). While understanding the isometries of semi-direct
products involving finite fields is a big step, understanding the isometries of semi-direct
products for any graphs may be too big.

Previous students have classified all two-point homogenous graphs up to 13
vertices. I am interested to know how much further the semi-direct product gets the
classification and what the smallest number of vertices is where a graph is not part of an; h

known family, nor derived from a group, nor any type of product of smaller graphs.

Bibliograph

{11  Hungerford, Thomas W. Algebra. Springer-Verlag: New York, 1974.



