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SYLOW-LIKE THEOREMS IN GEOMETRY AND ALGEBRA

Thomas Q. Sibley

The notion of congruence provides a means to extend the Sylow
theorems from group theory to a class of geometric structures
called congruence spaces and to their corresponding loops. The
extension of these results depends on the existence of a group
acting transitively on the congruence space and preserving con-
gruence. A partial ordering on the congruence spaces suggests a
means to form all of these spaces from groups.

In (R,+) we call segments ab and cd congruent, written
absed, iff la-bl = lc-dl or, more explicitly, la+(-b)!| =
le+(-d)!. This geometrical notion can apply to groups and other
algebraic structures given a suitable generalization of absoclute

value.

The work of Wolff [5] considers elementary properties of con-
gruence for commutative groups and so is a special case of the
present article. Further, this article differs significantly
from the work of Kustaanheimo [3] on congruence, since this
article does not depend on the pre-existing structure of an
affine plane over a finite field. The congruence relation of
Kustaanheimo can be obtained from the congruence relations
presented here by suitable "lumping together" of absolute value
classes. Such "lumping" is avoided here to ensure the
generalization of the Sylow Theorems. However, the generaliza-
tion of LaGrange’s Theorem holds even then. The work of Chen and

Teh [1] also sets extra conditions on the structures.
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DEFINITION. A congruence loop (L,%,1, ~,I1), or just (L,%), is

a set L with a binary operation %, an identity and two unary
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operations and |l satisfying

&) 1% = w = xél, wha Se b = o Lioe, Waekyd ™3 = by 73w "R,

b) (L,*¥) forms a Latin square, i.e. every element appears ex-—
actly once in every row and column of the Cayley table of *.

c) Ixl = Ix ~1| € {x,x_l}.

DEFINITION. A congruence space 1is a set L with a relation =

on LxL satisfying

a) = is an equivalence relation on LxL, absba and (aasbe iff
b = e).

b) (L,s) is regular, i.e. every element a€lL has the same
number of incident edges ab in a given equivalence class of
= as any other element of L has.

c) For all a, b€L, {c: ab=ac} has at most two elements in it.

A congruence loop (L,*) becomes a congruence space by defining
absed iff Ia*ﬁ_ll = 1ctd—ll. Sibley [4] proved that every
congruence space can be obtained from one or more congruence
loops using this definition of =. The operation Il serves
here only to define the congruence on which the arguments are
based. Hence, it will not matter whether Ixl is x or x_l.
Property c¢) in both definitions plays a central role in
generalizing the Sylow theorems. This property guarantees that
given a point and an equivalence class or "distance", there are
at most two points at that "distance" from the given point.
Further, the regularity of (L,=) means that in analyzing the
geometric structure, we need only consider the structure around
one element, which for us will be the identity. Then each
"distance" corresponds to a value of |II. Congruence suggests

the concept of an isometry, a mapping preserving = and so

"distance".

DEFINITION. On (L,=), ¢: L—>L is an isometry iff for all
x, yEL, xy=o(x)o(y). I(L), or just I, is the group of

isometries of (L,=). (L,= is isogonal iff I(L) is transi-
tive on L. By extension, (L,X*) is also called isogonal in this
case.
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FACT. Every group is isogonal.
Indeed, the isometries Ga(x) = x%a form a regular subgroup of
I which is isomorphic to the original group. The group (Z/n,+)

of the integers (mod n) appears in Lemma 6 below. Its congruence

space looks like the vertices of a regular 0
n-gon, as in the illustration at the right. n-1 1
To see this, note that i+0 = i = (i+j)+(-j)

and so io=(i+j)j, even before applying |II. o 2
We will use this congruence space to describe 3

certain orbits in congruence spaces.

EXAMPLE. For the sixteen units of the Cayley numbers, the usual
multiplication gives a congruence loop, once we define Ieal =
I—eal = e, where & is any of the positive units except 1.
This example generalizes to the 2n+1 units of the hyperCayley
numbers, the 2"-dimensional algebras over the reals. Although
the multiplications for these structures are neither associative
nor commutative, their congruence spaces are isogonal. Even

more, the congruence spaces are isodigonal, as defined below.

Proposition 2 shows this from the equality Ix*yl = Ily%*xl| which
says these spaces are "almost commutative"”. They are also
"almost associative”™ in that IxX(y%z)! = I(x*y)*z)!l holds for

all hyperCayley numbers.

DEFINITION. (L,=) 1is isotoxal iff for all a, b, c, d€L, if
abscd, then there is o€I(L):o({a,b}) = {c,d}. (The isometry o
might switch the orientation of the "segments".) (L,s) is
isodigonal iff for all a, b, ¢, dEL, if ab=cd, then there is
o€I(L):o(a) = ¢ and o(b) = d. By extension, (L,x) is

isotoxal or isodigonal whenever (L,= is.

REMARK. The properties of isotoxal and isodigonal require
isometries which match any "segments" of the same "length".
Isodigonal implies isotoxal, which in turn implies isogonal when

we take a = b and ¢ = d.

PROPOSITION 1. If (L,%x) is a congruence loop and for all

a, x, yEL, I(x*a)*(y*afql = Ix*y‘1|, then (L,%) is isotoxal.
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Thus every group is isotoxal.

PROOF. The condition in the proposition guarantees that
Ua(x):x*a is an isometry. Hence (L,%¥) is isogonal. Let

absed and ¢ 1 (b) = p. One can readily check that either
a
000 _; or goo ;00 is an isometry which carries {a,b} to

a p a
{c.d},

PROPOSITION 2. An isogonal loop (L,%¥) 1is isodigonal iff for
all a,bEL, laxbl = Ibxal.

PROOF. We have lakbl = Ibkal iff lakb 11 = Ib L *al iff

ﬂbEb_la_l iff Jix) = x_l is an isometry. One can readily check
that this together with the isogonality of (L,*) 1is equivalent

to isodigonalityl

A subloop (H,*) of (L,%) is a subset closed under the opera-

tions Xk, 4 and |Il. There is a corresponding closure under

for the congruence space.

DEFINITION. (H, = is a subspace of (L,=) iff for all a, b,
cEH and d€L, if abscd, then dEH.

LEMMA 3. A subspace with 1 in it is a subloop. Conversely, a

finite subluop is a subspace.

The proof of this elaborates on the definitions of congruence
loops and spaces. The congruence relation does not single out
the special element 1. The subspaces without 1 are like

cosets of the corresponding subloops.

THEOREM 4 (Extended LaGrange). Let (L,=) be a finite isogonal

space and (H,= be a subspace. Then |IHI divides |ILI.

Similarly, if (H,*) 1is a subloop of a finite isogonal loop
(L,%), then IHI divides ILI.

SKETCH OF PROOF. The isometries of (L,= must take a subspace
to a congruent set which is therefore another subspace by

closure. Again because of closure, a subspace and its image
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under an isometry are either disjoint or identical. Thus these
congruent subspaces partition the whole space into equally sized

pieces, extending LaGrange’'s Theorem to these spaces. Lemma 3

Suppose xEHCL and o€G, a subgroup of I = I(L). Then as

immediately extends this to the loops

usual, xG is the orbit of x wunder @G, Ix is the subgroup of
isometries leaving x fixed, IH is the subgroup of isometries
taking H onto H and <¢> is the subgroup generated by .

LEMMA 5. If o€EI(L) and o has a fixed point, then ¢ 2 is

the identity. Hence for all a€lL, Ia is a Boolean group.

PROOF. By the definition of a congruence space, (L,=) is
regular. Hence any point can be used as the identity, so we can
pick the fixed point of ¢ to be 1. For all =x€L, xl=o(x)1.
Hence o(x) = x or o(x) = xnl by property <¢) in the defini-
tion of a congruence loop. Either way, 62 is the identity.

Since this holds in general, every element of Ia is of order 2'

LEMMA 6. Let o€I(L) be an isometry-of odd order n. Then

(1<o>, = is a subspace isomorphic to (Z/n,=).

PROOF. The orbit 1<o> = {ok(l) : 0<k<n}. By Lemma 5, 1<o&

has n points. Since ¢ is an isometry, UiTl)la}+k(1)dk(1).
This corresponds to il=i+kk in (Z/n,=) under the bijection
taking Uk(l) to k. The odd order of 1<¢> means that every
"distance" inside of it appears twice coming from every point.
Since that is the most part ¢) of the definition of a congruence

space allows, 1<¢> must be closed.

It is well known that if I 1is tramsitive on L, then all the

Ix are conjugate and IIxIILI = ITI(L)!. Theorem 7 below uses
isogonality to extend the Sylow theorems for p#2 to congruence
spaces. The case p=2 requires the stronger property of
isotoxal, as shown in Theorem 8. Theorem 9 simply transfers

these results to the corresponding loops.
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THEOREM 7 (Extended Sylow, p#2). Suppose (L,= is a finite

isogonal space with pkn elements, p an odd prime not dividing
J

m. Then there is a subspace having p elements for 0¢j<k.
Further, the number of subspaces of order pk which contain a

given element divides the order of L and is congruent to 1

(mod p).

PROOF. If ILI = pk m, then Lemma 5 shows II(L)I = Zipkm, for
some i<0. By the Sylow Theorems for groups, there is a subgroup
G of I(L) with IGI :plﬁ By Lemma 5, the only isometry in G
with a fixed point is the identity, because p is odd. Hence
for all x€L, xG must have pk elements. We may assume that
(L,=) comes from a finite isogonal loop. We will first show 1G

is a subspace with pk elements.

Let a, b, cElG and abs=ed. G is clearly transitive on 1G so
there are ¢,7€G such that o(a) = 1 = 7(c). Call o(b) = x;
then x€1G. Thus there is pEG such that

p(x) = 1. Because p 1is of odd order, p(l)fx. By part «¢) of
the definition of a congruence loop, p(1)=x‘l, ensuring x"lEIG.
Since 7T(d) 1is either x or x_l, d ='IH%T(d))ElG, showing

closure.

The above argument holds for any subgroup of odd order. Thus,
the subgroups of I(L) with order pJ, 0<j<k, give subspaces of
those orders which contain 1. Since I is transitive, this

holds for every point.

It remains to consider the number of subspaces with pk ele-

ments. By the Sylow Theorems for groups, the number of Sylow p-
subgroups of I divides II! and is congruent to
1 (mod p). We will next show that each of these subgroups give a

different subspace containing 1.

Suppose G and H are two Sylow p-subgroups of I and that
Y = 1G = 1H. We need to show G = H. G, H and Il are sub-—
groups of Iy. Every element of I, can be written as 7Yoo

Y
where TEH, and ©€G. To show G = H, it suffices to show that
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if neither T nor ¢ is the identity, then 7Tod is of even
order. Lemma 6 shows 1<¢> is a subspace isomorphic to

(Z/n,=), where n 1is the order of ¢. Clearly, T,0€l and

1<
I1<d> acts like the dihedral group Dn’ Now 7T(1l) =1
#0(1). There are two cases to consider, depending on whether

T(e(l)) is (1) or 6(1)_1.

on 1<&,

CASE 1. 1t(6(l)) = o(1l). Then T leaves 1<¢> pointwise fixed.
Since T 1is not the identity, there is some z¢1«ﬁ which 7«
moves. Then z<7,0>, has 2n elements in it. Further, 7Yoo

must be of even order.

CASE 2. %(o(1)) = o(1)! = ¢ 1(1). Then t and ¢ generate
the dihedral group for 1<¢>. Thus, Too is of even order.

In either case, 7Yoo is of even order. Hence the only elements of
odd order are already in G. Thus HGQE. Since IGI = IHI, G = H.
This shows that different Sylow p-subgroups give different sub-
spaces containing 1. Further, every subspace 8 containing 1
among its pk elements has II(S)I = 2 E)k. Hence every such
subspace comes from some Sylow p-subgroup. This means the number
of subspaces with pk elements, including 1, equals the number
of Sylow p-subgroups of I(L). Since this number divides IIIl =
2ipkm and is congruent to 1 (mod p), we need only show this
number also divides ILI = p]%. But each Sylow p-subgroup G is
embedded in a distinct subgroup IlG with Zipk elements. The
total number of these subgroups divides the index of each I

1G°’
i.e. m, and so divides ILIl

THEOREM B8 (Extended Sylow, all prime p). Let (L,= be an
isotoxal space with |ILI = p]%, p any prime not dividing m.
Then there is a subspace having pJ elements for 0¢j<k.

Further, the number of subspaces of order pk which contain a

given element divides the order of L and is congruent to 1

(mod p).
PROOF. We need only consider the case p = 2, since isotoxal
implies isogonal. So suppose ILI = 2'& and II | = 2. Then

1
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1II(L)1 = 2i+k m, m odd. By the Sylow Theorems for groups,
there is a group G with 161 = 25 For all xer, 11 nG1 is
. it
a power of 2 and II NMGIL2 L Further, I MGI IxG1 = 161 = 21",
: k
This means that for each x, IxGl! is a multiple of 2" . The xG

partition L, which has 2km elements. Since m 1is odd, at
least one xG has exactly Zk elements and for this x, IIxn Gl
= 21. We may assume that 1G has exactly Zk elements, since
otherwise we could use an appropriate subspace conjugate to G.

Claim: 1G 1is a subspace.

To show closure, let a, b, c€lG and abscd. As in Theorem 7,
there are ¢, TEG such that ¢(a) = 1 = 7T(c). Now
abzcdslo(b)=1v(d). Thus 7v(d) is either o(b) or o(b) 1. As
in Theorem 7, we have d(b)EIG and we need to show d(b)HIEIG
in order to use the previous argument that d = T_I(T(d))ElG.
But la(b)Eld(b)_1 and L is isotoxal, so there is an isometry
taking either 1 or d(b) to d(bfl . Further, that isometry
is in G because the other element, o(b) or 1, goes to 1.
Hence d(b)_IEIG, which shows the claim that 1G 1is a subspace.

In a similar manner, we can show there are subspaces of orders

29 for 0¢j<k.

: k
It remains to consider the total number of subspaces H with 2
i+k : _
elements, including 1. Note that IIHI = 2 since II HI =
1IT.1 IHI. Thus every such subspace H comes from some Sylow

1
p-subgroup G as H = 1G. Unfortunately, some Sylow Z-subgroups

could produce the same subspace and some could give no subspace

containing 1 at all in this way.

The reasoning of the paragraphs showing closure entails that
every Sylow 2-subgroup produces one subspace S with 2k ele-
ments, even though this subspace might not contain 1. Since the
images of S8 wunder I(L) partition L into congruent sub-

spaces, there is a subspace, say S which contains 1. Then

Gl
SGCIG and ISG 1= 2 E Then there must be some Sylow 2-subgroup
Gx such that SG = 1G¥. All of the Sylow 2-subgroups are con-—

jugate, so the number of such subgroups G which have same

Sibley

subspace 1G%x = SG is the same for all these subspaces contain-
ing 1. Further, as in Theorem 7, every subspace with Zk
elements, including 1, comes from a Sylow 2-subgroup. Hence the

number of such subspaces divides the number of Sylow 2-subgroups,
which divides 21+km and is congruent to 1 (mod 2). Since this

number is odd, it must divide m and so ILI. Finally, 1I(L)

is transitive, so all of this holds for all points, not just 1

THEOREM 9 (Extended Sylow for Loops). If (L,¥) is an isogonal

loop with pkm elements, p an odd prime not dividing m, then
there is a subloop having pj elements for 0<j<k and the
number of subloops of order pk divides the order of L and is
congruent to 1 (mod p). The above holds for p = 2 provided

(L,*) 1is isotoxal.

The proof of Theorem 9 simply applies Lemma 3 to Theorems 7 and
8y

Unfortunately, just because a loop has only one "Sylow p—subloop"

does not imply that that subloop will be "normal", i.e. the

kernel of a homomorphism. There are also counter—-examples which
show that the case p = 2 for the extended Sylow Theorems need
not hold if the loop (or space) is only isogonal. Further, it is

not clear how to extend the class equation to these loops.
Without associativity, {(x*y)*xkl:xEL] need not equal
{x*(y*x_l): X€EL} .

How much more general are isogonal loops than groups? I conjec—
ture that all isogonal spaces (and so loops) are related to

groups using a partial ordering on spaces of the same order.

DEFINITION. (L,E)E(L,E’) iff ab=cd implies ab=’ed. By
extension, (L,*)é(L,*’) iff this relation holds for = and

The diagram below shows the partial ordering for the isogonal
spaces of order 8 which I have found. 1In addition to those
formed from the five groups, I have found nine others formed from
loops and represented by the boxes in the diagram. The symbol @

represents the group of quaternions. The different layers in the



10 Sibley

diagram correspond to the number of elements of order 2 in the
loop. In going from one loop or space up to one above it, two
elements of order 2 turn into inverses of one another. This
corresponds in the spaces to having the two different equivalence

classes of edges become identified.

Z
/8

Z/2x2/2x2/2

PROPOSITION 10. If (L,=)¢(L,=’), then I(L,=) 1is a subgroup of
I(L,s'). Hence, if (L,%) 1is isogonal, then (L,*’) is also

isogonal.

CONJECTURE All isogonal loops dominate some group under £.
Equivalently, if I(L) is transitive, then it has a regular

subgroup.

I have shown this conjecture holds if the order of the loop is an
odd number or twice a prime number. This conjecture would allow
the description of all isogonal loops from groups by turning
various pairs of elements of order 2 into inverses of one
another. The next conjecture would generalize the Fundamental
Theorem of Finitely Generated Abelian Groups since the property
laxb! = Ib%al for isodigonal loops generalizes the commutative

property for groups.

CONJECTURE. (L,=) is isodigonal iff (L,= is isomorphic to
the congruence space of a commutative group or of (Zz)ka for
some k, where H is the loop of units of the hyperCayley num-

bers of some dimension.
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Isogonal spaces and loops clearly have internal structures quite
similar to groups. The geometric structure of congruence

provides the key to generalizing groups.
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