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8. A Steiner quadruple system is a BIBD (v, k, ), with

10.

k=4and A = 1. Show that v = 12n + 1 or 12n + 4.
Generalize. [Hint: See Problem 3.]

. a) Write the code words in the code based on the

(7, 3, 2) BIBD of Example 3. How many errors
can this code detect? How many can it correct?

b) Repeat part (a) for the code based on the affine
plane of order 3, a BIBD (9, 3, 1).

You can add rows to the incidence matrix given in the
text in a way that doesn’t give a BIBD. For example,
you can add rows that have four or more Is. By
Theorem 7.3.3, if the Hamming distance between
any two (new and old) code words is at least 3, you

will still be able to correct a single error while having
more code words.

a) Explain why, if you want to be able to correct
single errors, there is no point in adding code
words with one, two, or three 1s.
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b) Find all seven code words with four 1s that have
a Hamming distance of at least 4 from each other
and from the seven code words in the original

matrix. How do these new code words relate to
the code words?

¢) Find the two other code words that are a
Hamming distance of at least 3 from each other
and the 14 already found.

d) Suppose that you have a set of n code words,
each a seven-dimensional vector of Os and 1s,
and that each code word is a Hamming distance
of at least 3 from every other code word. Find
the total number of vectors possible (including
code words and noncode words). Explain why
every code word has seven vectors at a Hamming

distance of 1 from it. Explain why n can be no
larger than 16.

We can imitate the analytic geometry and transformations presented in Chapters 4 and 6
for finite geometries whenever we have algebraic structures corresponding to the arith-
metic of the real numbers. Finite fields provide the analog that we use, although a more
general approach is possible. (See Blumenthal [4].) Fields are number systems having
many of the familiar properties of the four usual operations of addition, subtraction,
multiplication, and division. Although there are other fields, we concentrate on the
fields of integers modulo a prime number. (See Gallian [6] for more information on

fields.)

Example 1

Let Z3 be the set {0, 1, 2} together with addition and multiplication modulo 3. That is,

after doing the usual arithmetic, we subtract multiples of 3 until we get back to a number
in the given set. For example, 2 + 2 = 4 becomes 1 (mod 3) because 4 — 3 = 1. We write
2+2=1 (mod 3). Think of the three numbers in the set placed around a circle (Fig.
7.8). The following tables give all additions and multiplications. Z is a field.

Figure 7.8

Example 2

Definition 7.4.1

Example 3

Theorem 7.4.1

Definition 7.4.2
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+ 0 1 2 x 0 1 2
0 0 1 2 0 0 0O
1 1 2 0 1 01 2
2 2 0.1 2 0 2 1 e

Let Zs be the set {0, 1,2, 3, 4} together with addition and multiplication moduic;2 5_
given in the following tables. For example, 3 x 4 =2 (mod 5) because 3 x 4 =12 =
12 —5—=5=2 (mod 5). Zs is a field.

+ 01 2 3 4 x 012 3 4
0 012 3 4 0 00 O0O0O
1 12 3 40 1 01 2 3 4
2 2 3 4 0 1 2 02 41 3
3°3 4 01 2 303 1 4 2
4 4 01 2 3 4 0 43 21 e
By Z, we mean the set (0,1,...,n—1} together with addition and multiplication

modulo n. That is, after doing the usual arithmetic, we subtract multiples of n until
we get back to a number in the given set.

Although Z4 satisfies many familiar algebraic properties, it miss.es.one. of‘ the deﬁmt:lg
properties to qualify as a field. The number 2 doesn’t haye a multiplicative inverse. That
is, none of the numbers in the set {0, 1, 2, 3} when multiplied by 2 and reduced mo.dglo
4 give us 1, the multiplicative identity. Thus we can’t divide by 2. We leave the addition
and multiplication tables for Z4 as an exercise. @

. . . k
Z, is a field iff p is a prime. There is, up to isomorphism, exactly one field with p
elements, where p is a prime number.

Proof.  See Gallian [6, 213 and 328]. =

We can use any field to form an analytic model of affine or projective geomeme.s,
just as we did with the real numbers in Chapters 4 and 6. The number of elgments in
a field is its order and equals the order of the corresponding affine or pro_l'ectlve plane.
Using algebra, we can develop matrices with entries from any ﬁejld to de?scnbe the affine
transformations and collineations of the corresponding geometries. As in Cha‘pt~er 4, we
need three coordinates for points so that the transformations can move the origin. For a
field F, F3 is the three-dimensional vector space over F. If you are familiar with abstract
algebra, you can show that the affine planes defined (and projective planes deﬁngd later)
do indeed satisfy the axioms of Section 7.2. The proofs that these systems satisfy the
axioms follow the proofs for the usual analytic models using the real numbers. (See
Karteszi [7].)

. 2
Given a field F, define AF2, the affine plane over F, as follows. The points of 3AF are
column vectors (x, y, 1) of I3, and the lines are row vectors [a3 b, g] from .F , wWhere
a and b are not both 0. Two row vectors represent the same line iff one is a scalar
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multiple of the other by a nonzero element of F. A point (x, y, 1) is on a line [a, b, c] iff
ax + by + c1 =0 (mod 5).

The 25 vectors of AZ§ form an affine plane of order 5. To find the line through points
(2,2,1) and (1,4, 1), we need to solve the system of two equationsa -2 +b-2+c- 1=
0 (mod 5) anda-1+b-4+c-1=0 (mod 5). The solution is [3, 4, 1] or any of
its multiples, modulo 5, such as [2-3,2-4,2- 1] =[1, 3, 2] (mod 5). (Note that the
Euclidean line through (2, 2) and (1, 4) is y = —2x + 6, which becomes [2, 1, —6] and
by multiplying by 4, is equivalent to [3, 4, 1] modulo 5.) Figure 7.9 illustrates the ﬁvc;
lines [m, 4, 0] through the origin, more familiarly known as y = mx. (In Zs, 4 acts as
—1 does in ordinary arithmetic.) Each line can be considered to cycle both horizontally
and vertically, as the numbers in Zs cycle. For example, line [2, 4, 0] goes over 1 and up
2 from one point to the next: (0, 0, 1), (1,2, 1), (2,4, 1), (3,1, 1), (4, 2, 1), and back to
(0,0, 1). The “vertical” line [1, 0, 0] provides the sixth line through the origin guaranteed

by Theorem 7.2.3. Every other point (x, y, 1) also has six lines on it, each parallel to one
of these six. @

Give algebraic conditions for two lines [a, b, ¢] and [a’, b/, '] to be parallel. Verify that
two such lines are equal or don’t intersect.

As in Chapter 4, we represent affine transformations by 3 x 3 invertible matrices
whose bottom row is [0 0 1]. For a field of order n, there are at most n® such matrices
because only six entries aren’t fixed, but not all are invertible. We can use the deter-
minant of a matrix (mod n) to determine whether that matrix is invertible. We use a
combinatorial argument to find the number of invertible matrices with the bottom row
of [0 O 1]. Again, as in Chapter 4, the images of points (0, 0, 1), (1,0, 1), and (0, 1, 1)
determine an affine transformation. The condition that the matrix is invertible implies
that these points must be mapped to three distinct points not all on the same line. For the
field of order n, the affine plane has n? points and (0, 0, 1) can be mapped to any of them.
Once we know where (0, 0, 1) goes, (1,0, 1) has n?—1 places to go. For (0, 1, 1) there
remain n? — n places to go because it can’t be mapped to any of the n points on the line

[1,0,0] [2,4,0] [1,4,0]
T g »

/e [3.40]

LAY
‘o [4,4,0]

g [0,4,0]

Figure 7.9  The lines through (0, 0, 1) in AZ2.
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through the other two points. Thus there are n?(n* - 1)(n? - n) =nd—nd —n*+n’
affine plane transformations over the field of order n.

For a field F, define PF2, the projective plane over F, as follows. The points of PF* are
the nonzero column vectors (x, y, z) of F 3 where two vectors represent the same point
iff one is a scalar multiple of the other by a nonzero element of F. The lines of PF? are
nonzero row vectors [a, b, ¢] from F3, where two row vectors represent the same line iff
one is a scalar multiple of the other by a nonzero element of F. A point (x, y, z)isona
line [a, b, c] iff ax + by + cz =0.

Consider the projective plane PZ% (Fig. 7.10). Z% has 33 = 27 vectors. The 26 nonzero
vectors pair up to give 13 points because of the two nonzero scalars, 1 and 2. The figure
emphasizes that PZ% adds four points and one line to AZ%, which is represented in Fig.
7.3. As there are four points on each line, we can define both H(AB, C D) and AB//CD
from Chapter 6 if A, B, C, and D are distinct collinear points. These definitions satisfy
Axioms (i)—(vii) and (ix) of Chapter 6. @

Verify that Axioms (viii) and (x) of Chapter 6 fail in PZ%.

Recall that the transformations of the projective plane, called collineations, can
be represented by invertible 3 x 3 matrices. As before, two matrices represent the
same collineation if one is a nonzero scalar multiple of the other. As in Chapter 6,
a collineation is determined by where it sends four points, no three of which are
collinear. Problem 7 shows that (n% 4+ n + 1)(n? + n)(n?)(n — )2 =n® —n® —n’ +n?
collineations exist for the projective plane over a field of order n.

The set of affine transformations for AF? and the collineations for PF? each form a
group.

Proof. We replace the specific field R with the general field F in the proofs of Theo-
rem 4.4.5 and Theorem 6.4.3. =

Figure 7.10 A representation of PZ%.
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Figure 7.11  The oval 4x? + 2y? +4x + 2y +3=01in AZZ.

7.4.1 Ovals in finite projective planes

Definition 7.4.4

Theorem 7.4.3

The preceding paragraphs indicate how well finite planes mimic many familiar geomet-
ric concepts. Mathematicians also have explored other traditional geometric concepts in
a ﬁrllite setting. In a finite plane a simple non-algebraic way to describe the analog to con-
ics 18 to use ovals. In Euclidean geometry, no three points on a conic are collinear. For
only a finite number of points, not very many sets can fulfill this property. Figure 7.11
shows a set of six points in AZ% with no three on the same line. Some exploring will
reveal that no other point can be added to this set. Indeed, in AZ‘?J and in PZ2, with
p > 2, we can never find more than p + 1 points with no three points collinear. (When
p = 2, all four points in AZ% form a set with no three points collinear. We omit this
special case.) Conveniently, these sets in PZf, correspond to second-degree equations.
A second-degree equation in an affine plane might give fewer than the expected number
of points because an affine plane can be seen as the corresponding projective plane mi-
nus a line and its points. Therefore ovals, the analog to conics, are usually defined for
projective planes. (See Beck et al. [2] and Karteszi [7, 110-119] for more information
on ovals in projective planes and finite analytic geometry.)

In a projective plane of order n, an oval is a set of n + 1 points, no three of which are
collinear. A line is tangent to an oval iff the line and the oval have just one point in
common.

Every point on an oval has exactly one tangent to the oval.

Proof. Let P be any point on an oval and Py, ..., P, be the other points on the
oval. The definition of an oval guarantees that the lines P P; for i > 0 are all distinct,
accounting for n of the n 4 1 lines through P. The remaining line cannot intersect the
oval except at P, so it must be a tangent. m

PROBLEMS FOR SECTION 74

1. Use AZ] in this problem.
a) Find the line on (1, 2, 1) and (0, 1, 1).

b) Find the intersection of the line in part (a) with
[2,2,2].

¢) Draw a picture to illustrate the effect of the affine
01 0

transformation l: 1 0 O:l on the affine plane
0 01

AZ%. Is the effect in AZ3 similar to the effect of

that matrix on the real affine plane? Explain.

0 2 2 2 0 0
d) Repeatpart(c)for[l 0 0:|,|:-0 2 O:|,

0 0 1 0 0 1
1 0 1
andI:O 1 2].
0 0 1

. Repeat Problem 1, using the affine plane AZg.

Generalize.

. Suppose that you try to form an affine plane using

Z4, which isn’t a field.
a) Find a line that doesn’t have four points on it.

b) Find two distinct lines with more than one point
of intersection.

¢) Find two lines with different slopes but no points
of intersection.

d) Which of the axioms of an affine plane fail when
you try to use Z4?

e) Repeat parts (a)—(d) for Zg, replacing four with
six in part (a).

4. Use the projective plane PZ% in this problem.

PROJECTS FOR CHAPTER 7
1. a) In a BIBD explain why, if A > 0, then k > 2.

Explain why BIBDs with k = 2 are easy to
construct but not particularly interesting.

b) Use Theorem 7.3.1 to find all triples (v, k, 1) with
v < 25 for which there could be a BIBD (v, k, A)
with v > k > 2 and A = 1. [Hint: Explain why
k<5.]

¢) Foreach triple (v, k, 1) in part (b), try to construct
a BIBD. Explore if a different (nonisomorphic)
BIBD can have the same values for v, k, and A.

d) Try to construct BIBDs with (v, k, 2) for v < 19
that aren’t built from BIBDs with (v, k, 1) by
simple repetition.

2. Explore the affine and projective planes AFﬁ and

PF‘%, where Fj is the field of order four with the

Projects for Chapter 7 283

a) Find the point on lines [2, 3, [] and [3, 1, 4].

b) Find a complete quadrangle, as defined in
Section 6.1.

¢) For the three collinear points P = (0,0, 1),
0=(1,0,1), and R = (1,0,0), find a point S
such that H(P Q, RS), as defined in Section 6.1.
Is S unique?

. Repeat Problem 4, using the projective plane PZ%.
6. Define a projectivity in PF2. (See Section 6.4.) Count

the number of projectivities if the field has order n.
|Hint: See Theorem 6.4.1.]

. Show that (12 +n + D>+ n)H)(n — 1)? =

n® — n® — n3 + n? collineations exist in a projective

plane over a field of order n.

. a) Find the points on the oval x> + y2 — z2=0in

PZ%. (For simplicity, you may assume throughout
thatz=0o0rz=1.)

b) Repeat for x24y2—22=0in PZ%.

¢) Describe the points not on either of the ovals in
parts (a) and (b).

d) Repeat for x% 4 2y2 —kz?=01in PZ%, where
k=1l,:..04

. Find the points in the affine plane AFZ on ovals

x24+y2=1,x*4+4y=0,and x> + 3y*> = 1. Explain
the difference in numbers of points.

following addition and multiplication.

+ 0 1 a b x 0 1 a b
0 0 1 a b 0O 0 0 0 O
1 1 0 b a 1 01 a b
a a b 0 1 a 0 a b 1
b b a 1 0 b 0 b I a

. a) Define points and planes for the affine space AF?,

where F is a field of order n.

b) Count the number of points, lines, and planes in
AF°.

¢) Count the number of affine transformations in
AF.

d) Count the number of points and lines in AFX,

the k-dimensional affine space over the field F.
[Hint: How many lines are there on each point?]

e) Explain why the number of‘afﬁne transformations
in AF* is n* ]—[I;;(l)(nk —n’) if F is of order n.
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. a) Repeat Project 3, parts (a), (b), and (d) for

projective spaces PF> and PF*.
b) Explain why PF? has (n + n? +n + 1)(n® +
n? 4+ n)(n? 4+ n?)@3)(n — 1)3 collineations.

. Program a computer to search for projective planes

of orders 4 and 5, using the symmetries of a regular
polygon as in Section 7.3.

. Define a point to be exterior to an oval if two

tangents to the oval are on that point. Define a point
to be interior to an oval if no tangents to the oval
are on that point. Choose different ovals and find
their interior and exterior points. Look for formulas
counting the number of exterior and interior points
for an oval in P Z’z,. Prove your formulas.

. Explore Desargues’s theorem (see Section 6.1) in

PZf, for various p > 2. (Explain why Desargues’s
theorem isn’t interesting in PZ%.) (Smart [9] has an
axiomatization of Desargues’s configuration, which
is shown in Fig. 6.4.)

. The axiomatic system for a weak hyperbolic plane

has the undefined terms point, line, and on and the
following axioms.

i) Every two distinct points have exactly one line
on them both.

ii) There are at least four points with no three on
the same line.

iii) Given a line and a point not on- that line, there
are at least two lines on that point with no point
in common with the given line.

a) Show that any set of n > 5 points is a weak
hyperbolic plane if you take the lines to be all
subsets of two elements.

b) Find a model of a weak hyperbolic plane with
some lines having only one point on them.

¢) Find a model of a weak hyperbolic plane with six
points, every line with at least two points on it,
and two lines with different numbers of points on
them.

Define a hyperbolic plane to be a weak hyperbolic
plane satisfying this stronger version of Axiom (iii):

iii’) Given a line with n points on it and a point not
on that line, there are exactly n lines through
that point which do not have any point in

common with the given line.

d) Prove: If one line of a hyperbolic plane has n
points on it, then all do. Find the number of

points and lines in terms of n and prove your
answers.

e) Are your results in part (c) consistent with
Theorem 7.3.17 Explain.

f) Use a computer to find a model of a hyperbolic
plane similar to that in Example 5.of Section 7.3,
but with k = 5.

. You can define a notion of distance in finite affine

planes and so investigate isometries.

a) For a prime p with p = 4n + 3, define the
distance in AZf, between (s, ¢, 1) and (u, v, 1)
to be (s —u)?+ (t — v)2 (mod p). For p =3
and p =7, verify that two distinct points have
a nonzero distance between them. How many
points are at each possible distance from a given
point? Do the points at a given distance from a
point form an oval (“circle”)? If so, what is the
equation of that oval?

Determine which affine transformations of AZf,
are isometries; that is, they preserve the distances
of part (a). Relate these isometries to the
isometries of Section 4.3. [Hint: In Section 4.5,
an affine matrix was defined to be an isometry iff
its upper left submatrix was orthogonal.] Count
the number of isometries in AZf,. Prove that the
isometries form a group.

¢) For a prime p not of the form 4n + 3, the
definition of distance in part (a) has the following
curious property. There are distinct points
with a distance of 0 between them. Verify this
property for the primes 2, 5, 13, and 17. You can
modify the distance formula for p =4n + 1 by
multiplying the term (f — v)? by some nonzero
scalar of Z,. Experiment with different scalars.
Do the points at a specific distance from a given
point form an oval? If so, what is the equation
of that oval? How does the equation relate
to the scalar? Investigate isometries for these
planes with these distances. Count the number of
isometries.

b

~—

d) Use different definitions of distance to explore
parts (a) and (b). Do they change the number of
isometries? Is there a common formula for the
number of isometries for AZ?,?

¢) Define perpendicular in AZi for odd primes p.
Do you need different definitions for different
primes?

f) Explore similarities in AZ?‘,, for p=4n+3 and
p = 4n + 1. Count the number of similarities for
AZ%7 and show that they form a group.

10. Let potential code words be vectors of Os and 1s of

length n.
a) Find the total number of these vectors.

b) How many vectors are at a Hamming distance of
1 from a given vector?

¢) For a code to be able to correct one error, each
pair of code words must be a Hamming distance
of at least 3 apart. Use parts (a) and (b) to
determine the maximum number of code words
possible if each pair must be a distancé of at least
3 apart. For various values of n, look for codes
(sets of code words) that can correct one error
and have as many code words as possible.

Suggested Readings
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d) Redo part (c) with codes that can correct two (or
more) errors. [Hint: The binomial theorem may
be helpful.]

e) Redo part (c) with codes that can detect two or
more errors.

Explore design theory. (See Anderson [1], Berman
and Fryer [3] and Karteszi [7].)

Explore coding theory. (See Anderson [1] and
Gallian [6].)

Explore finite geometries. (See Blumenthal [4] and
Dembowski [5].)

Write an essay discussing the analogies between
finite geometries and the familiar Euclidean (and
projective) geometry. What insights can finite
geometries provide?
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