a) Show that v, the total number of girls, must
satisfy v = 12k + 4.
b) Repeat Problem 4(b) for v = 12k + 4.

6. Generalize Problem 5, wherein there are n girls in
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iv) In G one point is adjacent to any two non-
adjacent points.

a) Find a figure satisfying all four conditions. How
many points are there?

each row.

7. A geometric figure G satisfies the following

conditions.

i) G is made of points, some pairs of which are

adjacent.

ii) Every point of G is adjacent to k =2 other

points.

b) Repeat part (a) for k = 3 in condition (ii). (This
figure is called the Petersen graph.)

¢) For a general k in part (ii), find a formula for the
total number of points in a figure satisfying all
four conditions.

d) For various values of k, find other figures that
satisfy conditions (i), (ii), and (iv) but not (iii).

iii) No three points of G are mutually adjacent.

7.2 AFFINE AND PROJECTIVE PLANES
7.2.1 Affine planes

Axioms 7.2.1

Exercise 1

Definition 7.2.1

Definition 7.2.2

Example 1

Focusing on a few of the undefined terms and axioms of Euclidean or other geometries
helps us understand these geometries better. This restriction also leads naturally to
geometries having finitely many points. With affine planes we explore relations of points
and lines, especially parallelism, but can’t use them to consider betweenness, distance,
and congruence. (Of course, mathematicians have explored these concepts in other
geometric systems.) The axiomatic system of an affine plane has the undefined terms
point, line, and on and the following axioms.

i) Every two distinct points have exactly one line on them both.
ii) There are at least four points with no three on the same line.

iii) For every line and point not on that line, there is a unique line on that point
that has no point in common with the given line.

Verify that the Euclidean plane is an affine plane.

Two lines, k and [, are parallel, written k||/, iff either k =/ or no point is on both &
and /.

An affine plane with n points on each line is of order n.

Figure 7.2 depicts a model of an affine plane of order 2 and Fig. 7.3 depicts a model
of order 3. In each figure, lines parallel to one another are drawn with the same kind of
line for clarity. We can use Fig. 7.3 to obtain solutions to the nine-schoolgirl problem in
Problem 3 of Section 7.1. For example, for the first day the rows could be the horizontal
lines, for the second day the rows could be the vertical lines, and so on. @

After proving some initial, elementary properties of all affine planes in Theo-
rems 7.2.1 and 7.2.2, in Theorem 7.2.3 we show that all finite affine planes have an
order, as stated in Definition 7.2.2. In Theorem 7.2.4 we use a combinatorial argument
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Theorem 7.2.1

Theorem 7.2.2

Theorem 7.2.3

Exercise 2

Figure 7.2  An affine
plane of order 2.

Figure 7.3

An affine plane of order 3,

to reveal necessary relationships between the numbers of points and lines. However
such counting arguments can’t guarantee the existence of affine planes.

In an affine plane
i) two distinct lines have at most one point in common,
ii) for every point there is a line not on that point,
iii) for every line there is a point not on that line,
iv) every line has at least two points on it, and
V) every point is on at least three lines.
Proof.  For parts (iii) and (iv), let k be any line. Let A, A}, A, and A3 be the four

points guaranteed by Axiom (ii). At least one of these four points, say, A, is not on k,
showing part (iii). Consider the lines k;, which are on A and A;. Axiom (ii) ensures that
these lines are distinct. At most, one of them is parallel to k, by Axiom (iii) and hence the
other two intersect k. These two lines already have A in common, so they must intersect
k in different points by part (i). See Problem 1 for the remaining parts. m

Parallelism is an equivalence relation for lines in an affine plane. That is, for all lines k,

1, and m, three properties hold: reflexive, k || k; symmetric, if k)L, then l||k; and transitive,
if k|| and I||m, then k|m.

Proof. See Problem2. =

If some line of an affine plane has n points on it, then each line has n points on it and
each point has n + 1 lines on it.

Draw diagrams to illustrate the proof of Theorem 7.2.3.

Proof. Let k be aline with n points on it, say, Pj, . . ., P,, where n > 2. First, let/ be
any line not parallel to k. By Axiom (ii), there is a point Q on neither / nor k. By Axiom
(i), O has n lines on it that intersect k plus a parallel to k, by Axiom (iii), for a total of
n + 1 lines. Theorem 7.2.1 guarantees all to be distinct lines. In turn, Axiom (iii) forces
all but one line to be on /, so / has n points on it. Now suppose that a line m is parallel to
k. Use the axioms to find a line j not parallel to k. We can use the transitive property of

Exercise 3

Theorem 7.2.4

Example 2
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parallelism to show that m is not parallel to j. (See Problem 2(b).) Now, from the first
part of this proof, we know that j must have the same number of points as k and as m.
Hence m has the same number of points as k. The preceding argument for the point Q
shows that any point not on line k has n + 1 lines on it. For a point on line k, the same
reasoning holds with a line not on that point.

What happens in Theorem 7.2.3 for a line with infinitely many points on it?

g i ! 2 5 9
In an affine plane if some line has n points on 1t then there are n* points and n° + n
lines, and each line has n lines parallel to it, including itself.

Proof. Let P be any point. Then there are n + 1 lines on P and each of them has
n — 1 points on it other than P by Theorem 7.2.3. Thus there are (n + 1)(n - 1) points
besides P, giving a total of (n + 1)(n — D+1= n? points. See Problem 3 for the rest
of this proof. =

There is no affine plane of order six.

Solution. We show that an affine plane with six points on a !ine wquld provide a
solution to Euler’s 36-officer problem, which we assume to be impossible. So, for a
contradiction, suppose that there were an affine plane of order 6. We choose any t\fvo
nonparallel lines to determine the rows and columns of the officers and fix any one point
P (Fig. 7.4). Pick a line k through P other than a row or column. Put all the officers
from the first regiment on k and from each other regiment on one of the parallels of k.
Then no two officers from the same regiment would be in the same row or column by
Theorem 7.2.1. Next, pick a line m through P other than k or a row or a column. Put
the officers of each rank on one of the parallels of m. Again, we would have one officer
from each rank in each row and column. This outcome contradicts the fact that there
is no solution to Euler’s problem. Hence there can be no affine plane of order 6. For a
direct proof, see Anderson [1,91]. @

Figure 7.4  Using a hypothetical affine plane of order 6
to solve the 36-officer problem.
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The idea behind Example 2 enabled Fisher to turn affine planes into a solution
of the statistical design problems discussed in Section 7.1. But for which orders are
there actually affine planes? By 1896, geometers had shown algebraically that affine
planes (and projective planes) of order n exist if n = p*, where p is any prime number.
In Section 7.4 we develop analytic geometries with this approach. No other orders of
n are known to give planes, and many geometers believe that no other finite orders
are possible. Theoretical results have eliminated infinitely many other values of n. An
extensive computer search in 1989 revealed that there is no affine or projective plane of
order 10, the smallest order not previously decided theoretically. Proving which orders
of n give planes is one of the key open problems in finite geometry. (See Mullen [8].)

7.2.2 Projective planes

Axioms 7.2.2

Exercise 4

Example 3

Theorem 7.2.5

Axiom (iii) for affine planes characterizes parallelism. Projective geometry focuses on a
contrasting idea from perspective drawings in art, whereby parallel lines appear to meet
at a point on the horizon. Axiom (iii) characterizes projective planes and is the only
change from the axioms of affine planes. (The axioms here are the first three axioms of
the real projective plane in Chapter 6.) The axiomatic system for projective planes has
the undefined terms point, line, and on and the following axioms.

i) Every two distinct points have exactly one line on them both.
ii) There are at least four points with no three on the same line.
iii) Every two lines have at least one point on them both.

Explain why spherical geometry isn’t a model of these axioms but single elliptic geom-
etry is.

Figure 7.5 gives a model of a projective plane with three points on each line. @

In a projective plane

i) two distinct lines have one point on them both,

ii) there are at least four lines with no three on the same point,

Figure 7.5 A projective plane of order 2.
(The curve is the seventh line.)

Theorem 7.2.6

Theorem 7.2.7

Definition 7.2.3

Exercise 5
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ili) every line is on at least three points and

iv) every point is on at least three lines.

Proof. See Problem5. =

Projective planes have an important and mathematically aesthetic property called
duality. Every theorem about points and lines remains a theorem when we systemati-
cally switch the words point and line. The original theorem and the switched theorem
are called duals of each other. The first two parts of Theorem 7.2.5 contain the duals
of Axioms (i) and (ii). [The dual of Axiom (iii) is weaker than that of Axiom (i), so
this dual holds.] Because the duals of the axioms are all theorems, whenever we prove a
theorem in projective geometry we immediately obtain its dual by switching the words
point and line in the proof.

If one line of a projective plane has n + 1 points on it, then all lines have n + 1 points
on them and all points have n + 1 lines on them.

Proof. See Problem6. m

If one line of a projective plane has n 4 1 points on it, there are n* 4+ n + 1 points and
n? + n + 1 lines.

Proof. See Problem7. m

A projective plane of order n has n + 1 points on a line.

A natural connection exists between affine and projective planes of the same order,
explaining Definition 7.2.3. Theorems 7.2.4 and 7.2.7 show that a projective plane of
order n has one more line and n + 1 'more points than an affine plane of the same order.
The following construction shows that we can convert an affine plane into a projective
plane of the same order by adding one line and its points. This result corresponds to
the addition of a horizon line in perspective drawing. For an affine plane of order n, we
collect the lines parallel to each other in a class. For each of the n + 1 classes of parallel
lines, we add a new point that we define to be on each of those parallel lines. We also
define these n + 1 new points all to be on the same new line. We leave it as an exercise to
verify that the affine points and lines, together with the new points and line, satisfy the
axioms of a projective plane. The other direction works also. Take a projective plane and
delete any one line and the points on it. The remaining points and lines form an affine
plane, where lines become parallel if they formerly intersected on the deleted line. (For
more on affine and projective planes see Karteszi [7].)

Convert the affine planes in Figs. 7.2 and 7.3 to projective planes using the construction
given above.

PROBLEMS FOR SECTION 7.2

1. Prove the rest of Theorem 7.2.1.
2. a) Prove Theorem 7.2.2.

b) If a line in an affine plane intersects one of two
parallel lines, prove that it intersects the other.
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Prove the rest of Theorem 7.2.4.

a) In the models illustrated in Figs. 7.2 and 7.3 find
the maximum number of points so that no three
are on the same line.

b) In an affine plane of order n, prove there can be
at most n + 2 points such that no three are on the
same line.

¢) Repeat part (b) for a projective plane of order n.

. Prove Theorem 7.2.5.
. Prove Theorem 7.2.6. [Hint: Modify the proof of

Theorem 7.2.3 and use duality.]

. Prove Theorem 7.2.7. [Hint: Modify the proof of

Theorem 7.2.4 and use duality.]

. a) For which axiom of affine planes is its dual

provable? Prove it.

b) For the other axioms, show that their duals must
be false.

¢) For which parts of theorems of affine planes are
the duals provable? Prove them.

. A weak projective plane satisfies Projective Axioms

(i) and (iii) and the following replacements for
Axiom (ii).

ii’) There exist a point and a line not on that point.
ii”) Every line has at least two points on it.

a) Find a model of a weak projective plane of
order 1.

b) Prove that duality holds in this revised axiomatic
system.

¢) Find a model of a weak projective plane with two
lines having different numbers of points on them.

d) Suppose that we replace Axiom (ii) for affine
planes with the Axioms (ii’) and (ii”). Show that
every such “weak affine plane” actually is an
affine plane.



