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Finite Geometries

Experimenters testing varieties of seed, fertilizers, or pesticides need to
guard against other factors accidentally favoring one variety over
another. For example, the drainage or quality of the soil will vary from
one part of a field to another. Thus differences in the success of
different varieties might be due to extraneous factors rather than the
varieties themselves. Finite geometries provide a way to minimize such
potential bias in experiments in areas ranging from agriculture to taste
testing. Mathematicians have also used finite geometries to develop
error correcting codes.
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Chapter 7 Finite Geometries

The moving power of mathematical invention is not reasoning
but imagination. —Augustus DeMorgan

7.1 OVERVIEW AND HISTORY

Example 1

Finite geometries as a subject arose from the investigations of geometric axioms at the
end of the nineteenth century. The advent of hyperbolic and other geometries prompted
a r.enewed interest in axioms. In particular, geometers sought models satisfying certain
ax1‘oms but not others. Often these models had finitely many points, whence the term
finite geometries. The first finite geometry was a three-dimensional example with 15
points developed in 1892 by Gino Fano. Geometers soon realized that finite geometries
and their axiom systems were interesting for their own sake. Geometers incorporated
into them various intriguing designs, results, and problems that had preceded this ex-
plicit development of finite geometry.

As so often happens in mathematics, significant applications arose from the blend
of interesting problems and mathematical structure. In turn these applications have
enriched mathematics by suggesting new areas to explore. Statistical design theory drew
on finite geometries and expanded the types of geometric structures and theorems. More
recently computers have greatly influenced the study of finite geometries, both by the
ability to consider more complicated examples and to meet the need for sophisticated
designs. Examples 1 and 2 illustrate that brute computing force may solve particular
problems but that more general problems require mathematical insight.

Euler posed the “36-officer problem” in 1782. He imagined six military regiments, each
with the same six ranks and supposed one officer of each rank from each regiment. Euler
sought a square array of these 36 officers so that no two officers of the same rank or from
the same regiment were in the same row or column. He was convinced that this problem
had no solution but was unable to give a proof. (The impossibility was finally proved in
1900 by an exhaustive search.) He was able to construct a solution to the corresponding
problem for 5% = 25 officers, among others (Fig. 7.1). He also conjectured that similar
problems with n? officers, where n = 4k + 2, would be impossible. Euler’s intuition was
uncharacteristically flawed. In 1960 after extensive research, mathematicians showed
that they could solve the n? officers problem for every value of n except2and 6.
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Figure 7.1 A solution to the 25-officer problem. The five ranks are A,
B, C, D, and E, and the five regiments are 1, 2, 3, 4, and 5.
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LEONHARD EULER

The Swiss mathematician Leonhard Euler (1707-1783) was the most prolific mathemati-

cian of all time—it took the St. Petersburg Academy 47 years to finish publishing the
more than two hundred papers left when he died. Euler (pronounced “oiler”) finished his
university degree in theology at age 15. Meanwhile he had started studying mathematics
with Johann Bernoulli and published his first paper at age 18. He followed Bernoulli to
the St. Petersburg Academy in Russia and stayed there until he was 34. Euler then went to
Berlin for 25 years at the request of Frederick the Great

Euler returned to Russia in
1766 blind in one eye and soon became completely blind. However, his production of
mathematics didn’t diminish. He merely dictated his papers and used his phenomenal
memory to accomplish even the most complicated computations in his head. (Euler
created the 36-officer problem, with its strong visual appeal, when he was blind.) Euler
knew and made major contributions to all of mathematics and many of its applications
in physics, although we discuss only some of his geometric work.

Euler, like mathematicians of his time, focused on particular problems which led
to deeper, general insights. Euler’s investigation of the Konigsberg Bridge problem in
1735 marks the beginning of graph theory, an area of mathematics closely tied to
combinatorics. Euler’s formula (and its generalizations), discussed in Section 1.6, is a key
theorem in graph theory and topology. Euler gave his argument for this formula in 1751.
Euler’s many textbooks established the importance of functions in analytic geometry and
calculus. In his 1748 textbook he first introduced parametric equations (see Section 2.3).
The problem of representing the curved surface of the earth on flat maps led to a variety
of Euler’s investigations and differential geometry.

Euler’s fame as a mathematician provided one reason to tackle the general problem
in Example 1, but a modern application provided another impetus. In the 1920s Sir
Ronald A. Fisher developed statistical design theory. He and others wanted to test,
for example, how the interactions of varieties of fertilizers and pesticides affected the
growth of a type of plant. They needed to test each variety of fertilizer with each variety
of pesticide. For n varieties of each, there are n> combinations. Previously, others had
arranged different varieties of fertilizer in the rows and different varieties of pesticide in
the columns. However, fields in nature, unlike mathematics, aren’t uniform. Hence some
rows or columns may provide better drainage, soil nutrients, or other growing conditions
than others. To control for such “confounding variables,” Fisher realized that he needed
a design wherein each type of fertilizer and each type of pesticide appeared once in each
row and column. Thus Euler’s 36-officer problem became the prototype for Fisher’s
design problems. Fortunately, geometers had already solved many of these types of
problems by using affine planes, which we develop in Sections 7.2 and 7.4. Fisher
used these geometric solutions, starting a vital interaction between finite geometries and
design theory.

Example 2 In 1850, the Rev. Thomas Kirkman posed and solved the “15-schoolgirl problem.” He
supposed that the girls took walks every day in an artificially regimented style of five
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rows of three each. He asked for daily arrangements of them so that any two girls walked
in the same row just once a week. Computers have listed all 845 essentially different
ways to solve this problem, but there is no easy way to generate such a solution. Ope
such solution, from Berman and Fryer [3], follows.

a) Show that v, the total number of girls, must
satisfy v = 12k + 4.
b) Repeat Problem 4(b) for v = 12k + 4.

. Generalize Problem 5, wherein there are n girls in
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iv) In G one point is adjacent to any two non-
adjacent points.
a) Find a figure satisfying all four conditions. How
many points are there?

Sunday  Monday  Tuesday ~Wednesday Thursday  Friday  Saturday each row. b) Repeat part (a) for k=3 in CO'ndllIOH (ii). (This
1 2 3 1 :435:-1:.6 7 .1 8 9 11011 1121% 11415 7. A geometric figure G satisfies the following figure is called the Petersen grdph.‘)

4 812 2. 8186 .2 911 21214. 21315 2 4 6 2 5 9 conditions. ¢) For a general & in part (ii), ﬁfldalonpu}qfor the
51015 31314 31215 3 56 347 3 910 3 811 i) G is made of points, some pairs of which are total number of points in a figure satisfying all
61113 6 915 41014 41115 5 912 51114 4 913 adjacent. L 4 )

7914 71112 5 813 71013 6 814 7 815 610 12 ii) Every point of G is adjacent to k =2 other d) For various values of k, find other figures that

Which of the numerical conditions in this problem imply the others? The total points. satisfy conditions (i), (ii), and (iv) but not (iii).

number of girls (15) and the size of each row (3) clearly determine the number of
rows (5). We use the condition that each pair of girls occurs just once to determine
the number of days possible. For any girl, the 14 other girls must be put with this girl
in pairs so that there can only be seven nonrepeating days. This reasoning is a simple
example of combinatorics, a branch of mathematics that provides insight into numerical
relationships. @

iii) No three points of G are mutually adjacent.

Finite geometry is currently an active area of research benefiting from the cross-
fertilization of geometry, algebra, and combinatorics. Transformational geometry and
group theory gave powerful insights about finite geometries in the twentieth century
Just as they have since the nineteenth century for traditional geometries. Combinatorics
provides essential insights into finite and other areas of geometry. For example, the
consequences of Euler’s formula (see Chapter 1) were identified through combinatorial
reasoning. Error-correcting codes from coding theory, which we discuss in Section 7.3,

are used in electronic data transmission and benefit from the interaction of these areas
of mathematics.

PROBLEMS FOR SECTION 7.1

1. a) Find a solution to the “9-officer” problem. each pair of girls appears in the same row just once.

How many days can they go walking before they
repeat partners?

b) Find a solution to the “16-officer” problem.

¢) Explain why there can be no solution to the ) ]
“4-officer” problem. 4. Generalize Example 2 to a v-schoolgirl problem,

2. a) Describe how the As, Bs, and other letters in Fig. wherein there are still three girls in each row and

7.1 relate to each other. Similarly describe the
placement of the numbers.

b) Find a different solution to the “25-officer”
problem and describe any patterns you find in
the placement of the letters and numbers.

¢) Does Fig. 7.1 avoid the risk of confounding
variables that Fisher needed for his statistical
work? Repeat for your solution in part (b).
Discuss your answers.

. Modify Example 2 so there are nine girls. Find daily
arrangements of nine girls in rows of three so that

every two girls are in the same row just once.

a) Show that v must be an odd multiple of 3, say,
v==06n+3.

b) For v =6n + 3, find the number of days that these
girls can go for walks without any girl walking
with another girl twice. (Combinatorics won’t
guarantee such arrangements of these 6n + 3
girls.)

. Generalize Problem 4 so that there are four girls in

each row but that two girls are still in the same row
just once.



