6.6 PROJECTIVE SPACE

Interpretation

Homogeneous coordinates and collineations can be readily extended to higher dimen-
sional projective spaces, which are significant models that are used for many pur-
poses. For example, three-dimensional projective space provides perspective views for
computer-aided design (CAD). And the Lorentz transformations in the special theory
of relativity can be seen as isometries in a subgeometry of four-dimensional projective
space related to hyperbolic geometry.

By a point in n-dimensional projective space P" we mean a one-dimensional subspace
of the n + 1 dimensional vector space R"*!. By line we mean a two-dimensional
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subspace, by plane we mean a three-dimensional subspace, and so on. A point (line, and
s0 on) is on a line (plane, and so on) iff one is a subset of the other. By a collineation
in P" we mean an invertible (n + 1) x (n + 1) matrix. Any nonzero scalar multiple of
a matrix represents the same collineation.

Two points in P> (or any P") have a unique line on them. In other words, two one-
dimensional subspaces are spanned by a unique two-dimensional subspace. However
in P3 two lines can fail to intersect, which corresponds to skew lines in Euclidean
space. For example, the lines (two-dimensional subspaces) {(x, y,0,0) : x, y € R} and
{(0,0, z,¢) : z,t € R} intersect only at the origin (0, 0, 0, 0), the zero-dimensional sub-
space, which isn’t a projective point. Two distinct planes (three-dimensional subspaces)
in P3 must intersect in a line (a two-dimensional subspace). Each plane has three basis
vectors, giving six possible vectors. The whole space needs only four basis vectors, so
there must be an overlap of at least two. Because the planes are distinct, the overlap is
exactly two—a line. In P3, point and planes are duals and a line is “self-dual” Thus the
dual in P? of “Two points determine a line” is “Two planes determine a line.” In general,
the dual of an i-dimensional subspace in P" is an (n 4 1 — i)-dimensional subspace. e

6.6.1 Perspective and computer-aided design

Example 2

A general collineation in P? (a 4 x 4 matrix) can be broken into component parts, most
of which appear in affine transformations. Recall that the rightmost column of an affine
matrix describes how the origin moves and corresponds to a translation. The upper left
3 x 3 submatrix determines the type of affine.transformation: rotation, reflection, shear,
dilation, and so on. The bottom row of an affine matrix is [0 O 0 1 ]. The bottom
row of a collineation provides flexibility lacking in affine transformations. In a CAD
system the change of the lower right entry from a 1 to another value magnifies or shrinks
the entire picture by the same factor—a much faster computer alteration than changing

all the upper entries by the reciprocal factor. The first three entries of the bottom
a a a i
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Px Py Pz S
summarizes this discussion, where a stands for affine, p for perspective, s for scaling,
and ¢ for translation. (See Penna and Patterson [5] for more information on projective

geometry and computer graphics.)

row determine perspective views in each dimension. The matrix

We illustrate the effects of the perspective entries by using several related matrices
to project a cube. (For convenience we ignore the translation and scaling entries.) By
Theorem 4.5.4, we need only consider what the transformations do to the 4 x 8 ma-
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trix V = 0101010 1 containing the eight vertices of the cube.
1 1111111
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Figure 6.15  Image of a cube under PV.
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The matrix P = 00 1 0 represents a projection parallel to the x-axis; it
0 0 0 1

isn’t a collineation because it collapses three-dimensional objects to two dimensions.
On a computer screen, in nonhomogeneous coordinates the eight vertices in PV,
together with their edges, would appear as a square (Fig. 6.15). To see the three-
dimensional form of a cube we need to have a different viewing angle. Hence we rotate
the cube —30° around the z-axis and then —30° around the (original) y-axis, using

cos—30 0 —sin—-30 O cos—30 —sin—-30 0 O
his. fnattin B = 0 1 0 0 sin—30 cos-30 0 O _
sin—30 0 cos—30 O 0 0 1 0
0 0 0 1 0 0 0 1
3/ 3/4 1/2 0
__%5 4 \_/?ﬁ J(ﬁ) /2 8 . Then PRV gives the familiar, nonperspective view of
0 0 0 1
the cube (Fig. 6.16). Note that all the faces in Fig. 6.16 are parallelograms.
1 0 0 0 1 0O 0 0
Let P, = 8 (1) (1) 8 s Py 8 (1) (1) 8 , and Py, =
-1/5 0 0 1 -1/5 -1/5 0 1
1 0 0 0
0 1 0 0 ; : , Il .
0 0 1 o | Then PR P,V gives a one-point perspective view (Fig.

-1/5 —-1/5 —-1/5 1

6.17), PRP,,V gives a two-point perspective view (Fig. 6.18), and PR Py,,V gives a
three-point perspective view (Fig. 6.19).

In Fig. 6.17, note that the sides of the cube parallel to the x-axis all meet at
a vanishing point denoted Vy. The other sides remain parallel. We can compute the
coordinates of this vanishing point by finding the projection of the ideal point along
the x-axis, (1,0,0,0): PRP(1,0,0,0) = (0, =3, —¥3, 1) = (0,2.50,2.17, 1), or,
in the nonhomogeneous coordinates of the figure, (2.50, 2.17). Figure 6.18 includes the
vanishing points for both the x- and y-axes, V, and V,. Actually, Py, automatically gives
vanishing points for all directions in the xy-plane, which appear on the “horizon line”
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Figure 6.16 Image of a cube under PRV, Figure 6.17 Image of a cube under PRP, V.

Vi Vy shown in Fig. 6.18. For example, the diagonals connecting (0,0, 1, 1) to (1,1, 1, 1)
and (0, 0,0, 1) to (1, 1,0, 1) meet at the vanishing point (—0.92, 1.71), the projection

of the ideal point (1, 1, 0, 0). In three-point perspective (Fig. 6.19) every direction has a
vanishing point. @

Projective geometry, like single elliptic geometry, is not oriented. (See Section 3.5.)
In effect, there is no consistent way to define clockwise rotations around a point or
direction on a line. One consequence of this nonorientability is that collineations can
alter the appearance of a figure beyond what an artist or computer operator needs.
For example, projectivities (and so collineations) can map any three collinear points
to any three collinear points. Therefore these transformations can alter the betweenness
relations of points on a line. However, no perspective view of a real object will ever
turn it inside out. Stolfi [7] has created an oriented projective geometry for CAD by not
allowing negative scalars. We place a tilde (™) over a point to indicate an oriented point.
An oriented point is still a vector in R*, but two such vectors ¥ and W represent the
same point only if there is a positive real number k such that W = k - v . In effect each

Figure 6.18 Image of a cube under PRP,,V.

Definition 6.6.1

Example 3

Theorem 6.6.1
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Figure 6.19  Image of a cube under PRP . V.

projective point P is split into two opposite oriented points P and — P. This corresponds
exactly to the relationship between spherical and single elliptic geometry: Two opposite
points in spherical geometry represent the same point in single elliptic geometry. All
invertible matrices are still collineations in oriented projective geometry, although their
effect changes and two matrices represent the same collineation when they differ by a
positive scalar.

R is between P and Q iff there are posmve real numbers a and b such that R =
aP + bQ The line segment PQ is the set [R R is between P and Q R=PorR=
Q]. A set S of oriented points is convex iff, for all P and Q inS, P Q is a subset of S.

The oriented points between (0,0, 1) and (1,0, 1) are (x, 0, 1), where 0 < x < 1.

Proof. Let (u, 7w) be between (0’(7 1) and ( 1 f(\)/ 1). Then there are positive reals
a and b such that (u, v, w)-a(O 0 1) + b(1, 0 1) = (b, 0, a+b)-—-(a b,O 1). Note
that x = b/(a + b) must be between 0 and 1 because both a and b are positive. WLOG
we cag_plck a and b so that a+b=1. Then (a, b) are the barycentric coordinates
of (x,0,1) in terms of (0, 0 1) and (I, 0 1). (See Section 2.3 for a discussion of
barycentric coordinates.) @

Remark If we used these same de(ﬁ_ﬂtions with regular projective points P and Q and
any nonzero scalars, the entire line P Q would be “between” P and Q and so would be
a “line segment.” Theorem 6.6.1 would still be provable (changing the word positive to
nonzero), but that would not be particularly helpful for the only convex sets would be a
single point, a (projective) line, a (projective) plane, and the like.

Collineations in oriented projective geometry preserve betweenness and convexity.

Proof. Let y be a collineation and P and Q be any two points. Then R=aP + bQ
for a and b positive, is between P and Q Because y is a linear transformation, yR =
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Figure 6.20  Oriented points on a line.

y@P +bQ)=ay P+ by é, which shows that y R is between 4 P and y (~2 Convexity

is deﬁned in terms of betweenness, so collineations preserve convexity by the argument
used in Theorem 4.4.6. =

-Or-ienu?d projective geometry has some peculiarities. For example, two oriented
projective lines intersect in two oriented points. Also an oriented line in effect has two
copies of the real line on it (Fig. 6.20).

6.6.2 Subgeometries of projective space

Exercise 1

Theorem 6.6.2

Euclidean, hyperbolic, single elliptic, and other geometries of n dimensions are subge-
ometries of the projective geometry of the same number of dimensions. The transforma-
tion groups are entirely analogous to the corresponding groups in two dimensions. We
briefly consider three-dimensional hyperbolic space to lead into Minkowski geometry,
used in the special theory of relativity.

The points of three-dimensional hyperbolic space are the points in the interior of
the unit sphere x? + y2 + z2 — 12 = 0, which we take as the absolute quadratic surface.
Hyperbolic isometries leave this surface stable.

Extend the definitions from Section 6.5 of h-inner product, h-orthogonal, and h-length
to vectors in R4

A 4 x 4 nonsingular matrix represents a hyperbolic isometry iff its columns are h-

orthogonal, the first three have the same A-length, and the last column has the opposite
h-length.

Proof. See Problem 5. =

In Section 5.5 we discussed the Lorentz transformations, which preserve Axf\ +
Ay; + Az — Ar2, a value closely related to the equation of the quadratic surface for
hyperbolic space. Recall that the equation Axi + Ayi + Azi — At‘i = Ax% + A y% +
Azlz3 - At]‘;' expressed the invariance of the distance and time measurements between
two events from two frames of reference moving at a constant velocity relative to
each other. Transformations preserving all values k = Axi + Ayi - Azf\ — Ati clearly
leave x2 + y? + z2 — t2 = 0 stable and so are related to hyperbolic isometries. Actually,
the four-dimensional geometry for relativity, called Minkowski geometry, needs all
points (x, y, z, £). As with affine geometry, an extra coordinate is needed to permit
movement of the origin. Hence the points are written (x, y, z, ¢, 1). Thus Minkowski
geometry is a subgeometry of P4, rather than P3. A Lorentz transformation is therefore
a collineation of P*, but its upper left 4 x 4 submatrix is a hyperbolic isometry. As
in affine transformations, the bottom row is [0 0 O O 1] and the right column
represents translations of the origin.

Theorem 6.6.3
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The Lorentz transformations are collineations of P4, where the bottom row is
[0 0 0 0 1]and the upper left 4 x 4 submatrix is a hyperbolic isometry, with
the first three columns having h-length = %1 and the fourth column having h-length
=7l
Proof.

In Section 5,5 we showed that the value k above could be zero if the two events were
“lightlike.” For example, the differences in space and time coordinates of two points
on the path of a light beam would have k = 0. In effect, the h-length of the difference
of two lightlike events is zero. Similarly, two events can have k positive or negative
depending on whether their relationship is “spacelike” or “timelike,” respectively. (For

See Problem 6. m

further information on the special theory of relativity see Taylor and Wheeler [8].)

Projective geometry encompasses even more geometric ideas than Cayley and
Klein envisioned. Even though projective geometry falls far short of “all geometry,” as
Cayley exclaimed in the quote opening this chapter, it has proven its worth in classical
geometry, CAD systems, and many other applications.

PROBLEMS FOR SECTION 6.6

1.

Find and prove a condition similar to that in
Example 4 of Section 6.3, describing when four
points of P?, projective space, are in the same plane.

. Decide for which values of n the sets in parts (a)—(c)

must intersect in P”. Justify your answers.
a) A line and a plane
b) Two planes

¢) A k-dimensional subspace and a j-dimensional
subspace

d) What happens to the intersection in part (c) as n
decreases?

. Draw a three-point perspective image of the cube in

Example 2, using —0.25 for the first three entries in
the bottom row. Find the vanishing points V;, V),
and V,. What effect does changing the entries from
—0.2 to —0.25 have?

. Draw a three-point perspective image of the cube

in Example 2, using +0.2 for the first three entries
in the bottom row. Find the vanishing points V,, V,,
and V,. What effect does changing these entries from
—0.2 to +0.2 have?

. Prove Theorem 6.6.2. [Hint: See Example 3 of

Section 6.5.]

. Prove Theorem 6.6.3.
. Prove that the intersection of any collection of

8.

convex sets in oriented projective geometry is again
a convex set.

a) Graph the circle x> + y2 = 4 and the hyperbola
x% — y? =1 and shade in the interiors of the circle
x% + y% < 4 and of the hyperbola x? — % > 1.
Note that the intersection of their interiors has
two separate regions, which therefore can’t form
a convex set.

b) Explain why the oriented points (x,;: z), with
x%2+ y? < 4z% and z > 0, are interior to one
oriented representation of the circle in part (a)
and why these oriented points form a convex set.

0 0 1
¢) Verify that the collineation [ 1/2 0 0]

0 1/2 0
takes the circle of part (a) to the hyperbola of part
(a). Verify that points interior to the circle are
taken to points interior to the hyperbola.

d) Explain how to resolve the following seeming
contradiction between Theorem 6.6.1, Problem 7,
and the preceding parts of this problem. The
oriented interior of the circle is convex, the circle
is mapped to the hyperbola, and Theorem 6.6.1
implies that the hyperbola’s oriented interior is
convex. Problem 7 says that the intersection of
two such convex sets must be convex, yet the
intersection in part (a) clearly is not convex.
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1. Investigate how artists make perspective drawings.
(See Powell [6].) ’

2. Use parts (a) and (b) and Fig. 6.21 to explain why

Desargues’s theorem holds in three-dimensional
Euclidean space. Desargues’s theorem: If two
triangles are perspective from a point, then they
are perspective from a line.

a) First let triangles AABC and ADEF be in
two nonparallel planes and perspective from
P. Explain why the plane through P, A, and
B must include D, E, and R. Explain why the
two triangles must be perspective from the line
on the intersection of the planes containing the
triangles.

b) Explain how to use part (a) twice to prove
Desargues’s theorem if the two triangles are in
parallel planes or the same plane.

¢) What adjustments would be needed in this
argument for three-dimensional projective space?

d) State the converse of Desargues’s theorem and
explain how you could prove it without using
duality.

. Verify that the points on a Euclidean circle satisfy all
the separation axioms except Axiom (ix), involying
harmonic sets. Give an interpretation of harmonic
sets of points on circle using harmonic sets of lines
through the center. Does your interpretation satisfy
Axiom (ix)?

4. Jacob Steiner defined conics using projectivities as

follows. Let k; be the family of lines on point P, let
m; be the family of lines on point Q, and assume
that k; is related to m; by a projectivity of lines that
isn’t a perspectivity. Then the points R;, which are
the intersections of k; and m;, form a conic.

a) Explore this method with graph paper. Let
P =(5,12), Q = (10, —7), lines k; intersect
the y-axis at (0, i), and lines m; intersect the x-
axis at (i, 0). Find various points R; and sketch
the conic.

b) Repeat part (a) with P = (—10, —6) and Q =
(6, 10).

c) Identify the types of Euclidean conics you
obtained in parts (a) and (b). Explain why points
P and Q are always on the conic. Experiment

with other placements of P and Q and other
ways to relate the families of lines.

. a) Use a dynamic geometry program to explore the

following theorem in the special case of a circle.
Pascal’s theorem: Let Ay, Ay, A3, Ag, As, and Ag
be any six points on a conic. Then the three points
of intersections of the pairs of lines A} Ay - A4As,
AzAj3 - AsAe, and A3A4 - AgA, are collinear.
(See Coxeter [2] for a proof.)

b) Repeat part (a) where A, A3, and As are on one
line and Aj, Ay, and Ag are on another line.

¢) State and illustrate the dual of Pascal’s theorem.

(Pascal showed his theorem in 1640. Brianchon
showed the dual in 1806. Only later did the

Figure 6.& AABC and ADEF are perspective from point P and
from line Q R, where the planes containing the triangles intersect.

10.

concept of duality reveal the connection between
these theorems.)

d) State and illustrate the dual of part (b).

. In Section 2.2 we defined an ellipse by using two

foci. When we transform an ellipse to another
ellipse by an affine transformation, do the old foci
map to the new foci? Investigate with the ellipses
x2/a® + y?/b* = 1 and affine transformations that
map the x- and y-axes to themselves.

Relate homogeneous coordinates and barycentric
coordinates. (See Section 2.3.)

A correlation is a transformation that maps points
to lines and lines to points. Investigate correlations
and how they relate to duality. (See Cederberg [1] or
Coxeter [2].)

. Investigate the possible types of eigenvalues and

eigenvectors of a collineation. Find the possible sets
of fixed points and stable lines. How does the set
of fixed points relate to the set of stable lines for a
collineation? [Hint: Use duality.] (See Fraleigh and
Beauregard [3] for more on linear algebra.)

Investigate how computer-aided design uses projec-

Suggested Readings

11.

12.

13.

14.

15.
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tive geometry. (See Penna and Patterson [5].)

Investigate oriented projective geometry. (See Stolfi
[71)

Investigate the special theory of relativity. (See
Taylor and Wheeler [8].)

Convert various ordinary equations, such as y =
x2/(x% — 1), to homogeneous coordinates, in this
case x°y — x*z — yz2 = 0. Find the ideal points of
these homogeneous equations and relate them to the
graphs and asymptotes of the original equations.
In algebraic geometry, usually a graduate-level
subject, homogeneous coordinates are used to
explore polynomial equations.

Write an essay discussing Klein’s definition of
geometry (see Section 4.2) in light of the various
subgeometries of projective geometry.

Write an essay comparing the advantages and
disadvantages of synthetic and analytic approaches
to projective geometry. Do you agree with Poncelet
that analytic geometry gives answers without
insight? Explain.
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