tol,and 2 to x # % Verify that the harmonic set
H(01,2 %) goes to H(0 1, x 3). [Hint: Pick
a=ux.]

a ¢
b d

1 to 0o, and 2 to k. Find the image of % Explain
why this image forms a harmonic set with 0, oo,
and k.

. Prove Theorem 6.4.3. [Hint: See Theorem 4.3.1.]
. Prove Theorem 6.4.4.
. Prove Theorem 6.4.5. [Hint: See Theorem 6.4.1.]

. Recall Desargues’s theorem from Section 6.1:

If AABC and AA'B'C’ are perspective from a

point P, then they are perspective from a line.

Let A=(1,0,1), B=(1,1,1), C=(0,1,1),

A'=(2,0,1), BB=(4,4,1), C'=(0,3,1), and

P=(0,0,1).

a) Graph these points. (Se:a_E)xar*nng I, Sectioﬂ.&)
Find the intersections AB - A'B', AC - A'C’,
and BC - B'C’ and verify that these points are
collinear.

d) Find the projectivity [ ] that takes 0 to 0,

A U A W

a d g
b) Find the collineationa = | b e h | thatfixes

c i
P and takes Ato A’, Bto B’, an{l C to C'. [Hint:
pick a = 12.] Verify that the line you found in
part (a) is stable under «. Show further that every
point on this line is fixed by a.

¢) Make a conjecture generalizing part (b) and relate
your conjecture to Desargues’ theorem.
1/2 0 0
7. a) LetM:[ 0 -1 -1 ]FindM'I and
0 1/2 —1/2
the image of the unit circle x> + y? — 22 =0
under M.
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b) Explain why [cos 6, sin 6, —1] are lines tangent
to the unit circle.

¢) Convert the image in part (a) to nonhomogeneous
coordinates (z = 1). What type of Euclidean
conic is this image?

d) (Calculus) Use derivatives to show that [4k, —1,
—2k?] is tangent to the conic in part (c). Show
that the ideal line [0, O, 1] is also a tangent.

. If line k is tangent to conic C and « is any

collineation, prove that the image of k under o
is tangent to the image of C under a. [Hint: See
Problem 12 of Section 6.3.]

. Investigate the effect of the family of collineations

1 0 O
Mw=|:0 1 O]ontheconic

w 0 1

1 0 -1
C= [ 0 1 0 ] (the circle x? + y? — 2xz = 0).
-1 0 O

a) Find M;' and M'" and the general image
M;'TCMy" of C under M,

b) For the following values of w, convert
M;'TCMy" to the equation of a conic in
nonhomogeneous coordinates (z = 1): w = %,
-1 -1, and -1

¢) Graph the original circle and the conics of part
(b).

d) Which values of w in part (a) take the circle to
Euclidean ellipses? to hyperbolas? to parabolas?

e) Verify that the lines [1, 0, —2] and [0, 1, —1] are
tangent to the original circle by graphing them
with the circle.

f) Find the images of the lines of part (e) for the
values of w in part (b) and graph them with
the corresponding conics to verify that they are
tangents.

Projective geometry originated as an extension of Euclidean geometry. In 1858 Arthur
Cayley provided the historically important construction of Euclidean distance and an-
gle measure within projective geometry. That is, he showed Euclidean geometry to be
a subgeometry of projective geometry. He also related the distance in spherical ge-
ometry to projective geometry but was unaware of any other geometries at that time.
Felix Klein in 1871 built on Cayley’s construction and other insights to show that both
hyperbolic and single elliptic geometries (see Chapter 3) were subgeometries of projec-
tive geometry. Klein’s construction led him to pick the names hyperbolic and elliptic.
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ARTHUR CAYLEY

The most fundamental mathematical contributions of Arthur Cayley (1821-1895) came
during the 1S5 years he practiced law following his mathematical education at Cambridge
University. Cayley was first in his class and started teaching there, but soon left because
he didn’t want to be ordained as a priest, then required of all Cambridge professors.
Later, as a ren(_)wned mathematician, he taught at Cambridge (without ordination) from
1863 until his death, except for a year in the United States. Cayley published nearly two
hundred papers while practicing law and hundreds more in his lifetime, largely on algebra
and geometry.

At the age of 20, Cayley started publishing on algebraic invariants, a subject now
displaced by topics in algebra and geometry that he and others developed from invariants.
While in his early 20s he published some of the first works on n-dimensional geometry.
In 1845, at age 24, he found an 8-dimensional algebra generalizing the complex numbers
and Hamilton's recently published 4-dimensional quaternions. In 1849, he proposed the
?ll?stract definition of a group and later published the theorem on groups named after

im.

Algebraists had studied determinants for some time, but Cayley’s work on invariants
led him to be the first, in 1855, to study matrices and their properties. He used matrices
to represent systems of equations and transformations. He defined matrix multiplication
so that it would correspond to the composition of transformations. His crowning
achievement in what we now call linear algebra came in 1858 with publication of the
Cayley-Hamilton theorem on the characteristic equation of a matrix. Invariants also led
Cayley in the following year to his key derivation of Euclidean geometry within projective
geometry relative to an absolute conic. He had long used projective geometry in his study
of algebraic invariants, which included conics as second-degree invariants. His method
of finding metrical properties inside projective geometry led to the unification of several
geometries. Cayley learned of hyperbolic geometry after publishing this important paper,
but he never accepted it as more than a logical curiosity.

(Under his classification Euclidean geometry was a “parabolic” geometry.) The uni-
ﬁca.tion of many geometries under projective geometry emphasized the usefulness of
projective geometry and the importance of modern, abstract mathematics.

One geometry is a subgeometry of another in two regards. First, from Klein’s Er-
langer Programm (see Section 4.2), if all transformations of one geometry are trans-
formations of a second geometry, the first is a subgeometry of the second. Second, the
points, lines, and other terms of the subgeometry must be defined from the points, lines,
and the like of the encompassing geometry. Fortunately, these two conditions reinforce
each other. Figure 6.12 shows relationships of various geometries in terms of their trans-
formation groups.

Recall that projective properties of points on a line must involve at least four points
because any three points can be mapped to any three points by Theorem 6.2.7. Cross
ratios, harmonic sets, and separation, involving four points, are preserved under all
collineations by Theorem 6.4.2, as are projective properties. However, distance is a
relation involving just two points. Cayley realized that he could define the distance
between two points relative to two other points on a given line. To obtain these other
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Collineations

Affine
transfor-
mations

Hyperbolic Euclidean Single
isometries isometries elliptic
isometries

Figure 6.12  Some subgroups of collineations.

points he used the intersection of the line with a fixed conic, which he called the
absolute conic. Cayley similarly defined the angle between two lines by using two
other concurrent lines tangent to the absolute conic. We develop this idea fully only
for distance in Klein’s model of hyperbolic geometry. The other situations are more
complicated, for they involve complex numbers and other advanced concepts. The
transformations for various geometries are characterized as projective collineations that
take the absolute conic to itself. (See Tuller [9, Chapter 7] for more information.)

6.5.1 Hyperbolic geometry as a subgeometry

From a projective point of view, in the Klein model of hyperbolic geometry in Chapter 3
we could use the points in the interior of any (real, nondegenerate) conic, but the unit
circle is the simplest. In the following interpretation, this conic is the absolute conic
in Cayley’s terms. Note that any projective line through an interior point intersects the
conic in two points. Indeed, one defines a point to be in the interior of a conic if every
line on that point intersects the conic in two distinct real points. These two points of
intersection of a line and the conic match the property that hyperbolas intersect the
ideal line in two points. Klein used this analogy and other reasons to call this geometry
hyperbolic. He based the formula for hyperbolic distance on the cross ratio of the
two points and the intersections of the line they determine with the conic. Recall that
all collineations preserve the cross ratio, so automatically Klein’s distance formula is
preserved under whichever collineations are hyperbolic. Poincaré defined hyperbolic
distance in his model in the same way we do here. (See Sections 3.4 and 4.6.) Poincaré
recognized that the cross ratio is preserved under both inversions and collineations. To
simplify the distance formula we include a Euclidean way to compute it.

Interpretation for Hyperbolic Plane Geometry By absolute conic we mean x% +
y2 — z2 = 0. By point we mean the points (x, y, z), with x? 4 y? < 2%, interior to
the absolute conic. By line we mean the set of points interior to the absolute conic
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Example 1

Example 2

Exercise 1

Projective Geometry

that are on a projective line [a, b, c]. The intersections of a line with the absolute
conic are the omega points of that line. The distance between A and B is dy(A, B) =

c - |log(R(A, B,Q,A)| =c - llog(% = %)l, where XY is the Euclidean distance
between X and Y, ¢ is some constant, and €2 and A are the two omega points of line :ﬁé
By hyperbolic isometry we mean a collineation that leaves the absolute conic stable.

Verify that the adjacent points P; and P;1; shown in Fig. 6.13 have the same distance
between them. The x-coordinates of the points are Py =0, P; = %, P= %, Py = %,
Py=3,Ps=3,Pi=-P,Q=-l,and A =1

Solution. The Euclidean distances between these points are simply the differences
of their x-coordinates. Then (PoS2/PoA) <~ (P12/PiA) = (1/1) + (%/%) = % Simi-
larly, (P1Q/PiA) + (P, P1A) = (3/3) + (§/%) = L. All the corresponding products
equal % or 2. In turn, the absolute values of their logarithms are all the same. Hence,
whatever the constant c is, the distances all are the same. @

Euclidean rotations and mirror reflections fixing the origin map the unit circle to it-
self and so are hyperbolic isometries. A matrix X, analogous to a translation shifting
(0, 0, 1) along the x-axis to (x, 0, 1) has for its last column (x, 0, 1), with —1 < x < 1.
This translation leaves the omega points (1,0, 1) and (—1, 0, 1) fixed. Then X, =
a d x
b e O | mustsatisfy X,(1,0,1)=(@+x,b,c+1)=x(1,0,1)and X,(—1,0,1)
¢ f 1
=(—a+x,—b, —c+ 1) =A(-1, 0, 1). From these equations a =1, b=0, and ¢ = x.
Figure 6.14 suggests that X, should shift (0, 1, 1) and (0, —1, 1) to the points on the
unit circle directly above and below (x, 0, 1). This condition forces d =0 = f and

e=+1—x2 o

1 0 x 1 0 O
LetX,=| 0 +/1—x2 0 |.Verifythat C=| 0 1 0 |[,theunitcircle, is stable
X 0 1 0 0 -1
O,1,1)
-1,0,1 1,0,1
P, P, By PP, £ ) 0,0,1)} (x0,1) ( )
A
(Oa—lvl)
Figure 6.13 Figure 6.14

Theorem 6.5.1

Example 3

Exercise 2
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under any scalar multiple of X, and verify that the inverse of Xy is a scalar multiple of

1 0 =X
0 +/1—x2 0 |.Explainwhy X, is a hyperbolic isometry and why, in effect,
—X 0 1

X _ is the inverse of X .

The hyperbolic isometries form a group of transformations. The set MXy:—l<x<
1, A # 0} forms a group of transformations.

Proof. See Problem3. m

The matrices X, correspond to the transformations of velocities in the special the-
ory of relativity. (See Section 5.5.) In Section 6.6 we explore this connection, including
representing the geometry of relativity as a subgeometry of four-dimensional projec-
tive space. General hyperbolic isometries have a matrix form quite similar to spherical
isometries. (See Section 4.5.) A hyperbolic isometry M must take C to itself. By Theo-
rem 6.4.3, M~'TCM~" = AC, for A # 0. The special form of C simplifies this equation
further. To emphasize the relationship of these isometries with spherical isometries, de-
fine the h-inner product of two vectors to be (r, s, t) - (4, v, w) =ru +sv — tw. Only
the minus sign distinguishes this h-inner product from the usual definition. Following
this analogy, define the h-length of a vector (r, s, t) to be (r,s,t) - (r,s,1) and two
vectors to be h-orthogonal iff their h-inner product is 0. (These definitions do not fulfill
all the usual properties of inner products and lengths. For example, nonzero vectors can
be h-orthogonal to themselves and so have zero h-lengths.)

Find conditions on M so that M is a hyperbolic isometry.

Solution. For M to be a hyperbolic isometry, we must have M~'TCM~"' = AC for
some A # 0. Multiply both sides of this equation by M T on the left and M on the right
to get C = MTACM. We can factor out A and move it to the other side to get %C =
MTC M. If we write P for the first column, Q for the second column and R for the third
1 0 0 Py P P4Q PR
columnof M,then MTCM=M" |0 1 0 [M=|Q-wP Q4wQ Q=R
0 0 -1 | R-wP R, Q R4 R
1/ 0 0 ]
which is supposed to equal %C =| 0 1/A 0
0 0 e |
be h-orthogonal to each other to give 0 off the main diagonal. Furthermore, the first two
columns must have the same h-length, which must be the negative of the h-length of the
third column. e

’

. Then the columns of M must

Verify that the X, satisfy the conditions of Example 3.

6.5.2 Single elliptic geometry as a subgeometry

Single elliptic geometry (see Section 3.5) needs all projective points and lines. Thus
the absolute conic must contain no (real) points. For the absolute conic we pick the
imaginary conic x2 4+ y? + z2 =0, whose only real solution is (0, 0, 0), which isn’t
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a projective point. Lines in single elliptic geometry therefore don’t intersect the ab-
solute conic, just as an ellipse has no intersection with the ideal line, suggesting one
reason why Klein called this geometry elliptic. (He added single to the name to distin-
guish it from spherical geometry, in which lines intersect twice.) An isometry M for

1 00
this geometry is a collineation that takes this degenerate conic C=| 0 1 0 | toit-
0 0 1

self. Because C = I, the identity, the equation M~'TCM~! = AC for A # 0 reduces
to M~'TM~! = AI. Orthogonal matrices, the isometries for spherical geometry (see
Section 4.5), satisfy the similar equation MT = M~ or MTM =1I.

A collineation M is an isometry of single elliptic geometry iff M7 =AM~ for some
nonzero real number A. These isometries form a group of transformations.

Proof. See Problem5. =m

6.5.3 Affine and Euclidean geometries as subgeometries

Exercise 3

Example 4

Recall that the projective plane can be thought of as the affine or Euclidean plane
and one extra “ideal” line, [0, 0, 1]. Cayley realized that [0, 0, 1], thought of as the
degenerate conic z? = 0, functioned as the absolute conic. As affine geometry has no
notions of distance or angle measure, we can directly give the interpretation of the affine
plane as a subgeometry of projective geometry. Note that each affine line intersects the
absolute conic in one point just as a parabola intersects the ideal line in one point. Klein
considered affine geometry and its subgeometries to be parabolic.

Interpretation for Affine Plane Geometry By absolute conic we mean z> = 0. By
point we mean a point not on the absolute conic: (x, y, 1) = (Ax, Ay, A). By line we
mean a line other than the absolute conic: [a, b, c] = [Aa, Ab, Ac], where not both a
and b are zero. An gffine transformation is a collineation that leaves the absolute conic
stable.

Verify that the affine transformations of Chapter 4 are the affine transformations of the
preceding interpretation.

To derive Euclidean distance, Cayley needed to pick two specific points on the
absolute conic z2 = 0, the circular points at infinity,or I = (1,i,0) and J = (1, —i, 0).
Their name comes from the fact, noted by Poncelet, that these points are on every
Euclidean circle. Example 4 reveals that all Euclidean isometries map / and J to
themselves, showing the set {/, J} to be stable under this group of transformations.
The cross-ratio definition of distance (and angle measure) Klein employed in hyperbolic
and single elliptic geometries works for Euclidean angle measure but not for Euclidean
distance. Cayley utilized a more complicated method, which we omit.

Show that all Euclidean isometries map / and J to themselves.

Solution.
cosd —sinf ¢
sinf cosf® f | or
0 0 1
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Recall from Section 4.3 that Euclidean isometries are of the form

sin 0 c
—cos® f |. The first form, for direct isome-
0 1

tries, takes / = (1, ,0) to (cos @ — i sin 6, sin @ + i cosH,0) = (cos @ — i sin @, i(cos O
—i sin @), 0) = (1, i,0). Similarly, J maps to itself. Matrices of the second form, for

indirect isometries, switch / and J.

PROBLEMS FOR SECTION 6.5

1. a) Verify that the coordinate for each P; in Exam-

ple 1is 2/ — 1)/(2" + 1).

b) Verify that X /3, as defined in Exercise 1, takes
P;to Piyy.

¢) Verify that X3, as defined in Exercise 1, takes
—Piyito—Fi.

d) Verify that X3 - X1/3 is a scalar multiple of
X3/5.

. For the points A = (a,0, 1) and B = (b, 0, 1), verify

the identity dy (A, B) = dp (X (A), X, (B)), where
X, is the hyperbolic translation of Exercise 1.
[Hint: Simplify the cross-ratio for X,(A), X,(B),
©2=(1,0,1),and A = (-1, 0, 1) by factoring.]

. a) Prove that the composition of the hyperbolic

translations X, and X, is a scalar multiple of
Xapb, Where a @ b = (a + b)/(1 + ab) is the
addition of velocities in the special theory of
relativity. (See Section 5.5.)

b) Prove Theorem 6.5.1. [Hint: See Problem 7 of
Section 5.5.)

. Find the matrix for a hyperbolic translation Y} along

the y-axis. Verify that, in general, X, - Y, # Y}, - X,.
How are X, - Y, and Y, - X, related as matrices?
Let (¢, d, 1) be any point inside the unit circle.

6.6 PROJECTIVE SPACE

Find hyperbolic translations X, and Y, such that
X4 Y5(0,0,1) = (c,d, 1).

. Prove Theorem 6.5.2. [Hint: See Theorem 4.5.1.]
6. a) Show that a conic ax® 4+ 2bxy + ¢y? + 2dxz +

2eyz + fz%> =0 has the points (1,i,0) and
(1, —i,0) on it iff it is a Euclidean circle; that
is,a=cand b=0.

b) Show that all similarities take the circular points
at infinity to themselves.

. Find the properties of an inner product and of length

in a linear algebra text and explain which ones hold
and which ones fail for the h-inner product and the -
length. (See, for example, Fraleigh and Beauregard

31)

. a) Show that every single elliptic isometry that is

simultaneously an affine transformation must
be a similarity. Are there any other restrictions
on these transformations? [Hint: What are the
images of the points O = (0,0, 1), X; = (1,0, 1),
and Y| = (0, 1, 1) under a similarity?]

b) Describe all collineations that are simultaneously
single elliptic isometries, hyperbolic isometries,
and Euclidean isometries. Justify your answer
and show that these collineations form a group.

Interpretation

Homogeneous coordinates and collineations can be readily extended to higher dimen-
sional projective spaces, which are significant models that are used for many pur-
poses. For example, three-dimensional projective space provides perspective views for
computer-aided design (CAD). And the Lorentz transformations in the special theory
of relativity can be seen as isometries in a subgeometry of four-dimensional projective
space related to hyperbolic geometry.

By a point in n-dimensional projective space P" we mean a one-dimensional subspace
of the n + 1 dimensional vector space R"*!. By line we mean a two-dimensional



