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10. (Calculus) a) Write the equation y = x? in homoge-  12. Suppose that P is a point on the conic C. Claim: The

11.

neous coordinates.

line ! = PTC is tangent to C at P.

b) Show that the lines [a, b, c] tangent to the a) Verify the claim by using the matrix form for
equation in part (a) satisfy the equation of the conics in Problems 10 and 11.
line conic a? — 4bc = 0 as follows. First, pick b) Show that P is on the line [ of the claim.

x0, a real number, and find the coordinates of the
point (xo, yo, 1) on the conic. Next use calculus to
find the equation of the tangent line. Now convert
this line to the form [a, b, ¢] and verify that it
satisfies the equation a® — 4bc = 0.

¢) Suppose that P and Q are two points on the
conic C and that / and k are their corresponding
lines in the claim. Show that [ =k iff P = Q.
Explain why this equation shows that the lines in
the claim intersect the conic in only one point.

¢) Graph y = x? and selected tangents. Write a proof of the claim.
(Calclulus) Repeat Problem 10 for the hypt:‘trbola0 d) Show that all tangents / satisfy the equation of
y = and the corresponding line conic 4ab — c*. the line conic 1C-1T = 0.

Explain the similarities in these problems from a
projective viewpoint.

6.4 PROJECTIVE TRANSFORMATIONS

Interpretation

Theorem 6.4.1

The usefulness of homogeneous coordinates becomes apparent in terms of transforma-
tions. Recall from Chapter 4 that a transformation is a one-to-one function from a space
onto itself and that points are column vectors and lines are row vectors. Thus projectiv-
ities (transformations of collinear points) and collineations (transformations of all the
points of the projective plane) correspond to invertible matrices. If we use two homoge-
neous coordinates for points on a line, a projectivity maps points (i, v) to points (s, 1)
and can be represented as an invertible 2 x 2 matrix. This matrix can be considered to
map a line to itself.

A projectivity is represented by an invertible 2 x 2 matrix. Two such matrices that differ
by a nonzero constant represent the same projectivity.

Problem 2 of Section 6.1 shows that a projectivity can map any three collinear
points to any three collinear points. Theorem 6.4.1 shows the surprising fact that 2 x 2
matrices can mimic this flexibility.

For any distinct collinear points (41, v1), (42, v2), and (u3, v3) and distinct collinear
points (s1, 11), (52, 12), and (s3, 13), a unique projectivity maps (u;, v;) to (si, t).

Proof.  First we show that a projectivity can map the three collinear points (1, 0),
(0, 1), and (1, 1) to any three distinct collinear points (sy, t1), (s2, £2), and (s3, 13). The
S1
I .
column of the matrix by any scalar multiple A, (1, 0) still goes to (sy, 1) = (Asy, Afy)
and similarly for the second column, giving us the needed flexibility. For the matrix

Asy ps2

Aty un
and solve for A and p. Because (s2, #2) is not a multiple of (sy, #;) the determinant
R V)
n o n

matrix 2] maps (1,0) to (s, ¢;) and (0, 1) to (s2, ). If we multiply the first

] the image of (1, 1) is (As + wsy, At] + wiz), which we set equal to (s3, 13)

# 0. Thus there is a solution. In fact, the solutions form a family that are scalar
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multiples of one another. Thus a unique projectivity M takes (1, 0), (0, 1), and (1, 1) to
any three distinct points (s, 11), (s2, t2), and (s3, £3). Similarly, a unique projectivity g
takes (1, 0), (0, 1), and (1, 1) to (uy, vy), (42, v2), and (u3, v3). Then the projectivit

represented by M K ~! uniquely satisfies the theorem’s conditions. m .

Cross ratios, harmonic sets, and separation are preserved under projectivities.

a ¢

5 4 be any
proje_ctivity. We first show the cross ratios R(uy, uy, u3, us) and R(Muy, Muy, Mu,
Muy) to be equal. A cross ratio involves four determinants of the coordinates of the:

Proof. Let (u;,v;) fori =1, 2, 3, 4 be four collinear points and M =

; ! Uy u
points. For example, consider U: v3 and the corresponding determinant of the
" Mu, Mu u
images M (uy, vi) and M (u3, v3): ) ! M= M 1 M
Mv, Mus |M| B als The extra factor

of |M| appears in each of the four determinants in the cross ratio of the four images.
As two of these factors of M| are in the numerator and two in the denominator, they
cancel each other. Thus R(uy, uz, us, ug) = R(Muy, Mus, Musz, Muy). Harmonic sets

and separation are defined in terms of the cross ratio, so they also are preserved under
projectivities. m

A collineation of the projective plane is represented by an invertible 3 x 3 matrix. Two
matrices represent the same collineation iff one is a nonzero scalar multiple of the other.
A point P is fixed by a collineation o iff «(P) = P. A line k is stable under a collineation
«a iff every point on k is mapped by « to a point on k.

All the affine transformations from Chapter 4, including isometries and similarities,

are collineations because all affine transformations have invertible matrices of the form
a- ¢ e

b d f |. Theorem 6.4.3 describes how to find the images of lines and conics
0 0 1

under collineations. Although points, lines, conics, and collineations have multiple
representations, for simplicity we use just one such representation in the examples. In

essence a collineation is a projectivity for each line, so Theorem 6.4.2 applies to both
collineations and projectivities.

The image of the line [a, b, c] under the collineation M is [a, b, c]M~". The image of
the conic C under M is M~'TCM™!.

Proof. SeeProblem3. m

The set of projectivities of a line to itself forms a group of transformations. The set of
collineations forms a group of transformations.

Proof. SeeProblem4. m

Example 1

Example 2

Exercise 1

Theorem 6.4.5
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1 0 3
Consider the Euclidean translation T = | 0 1 -2 |. In Chapter 4 we showed that

0 0 1
a translation has no fixed affine points (x, y, 1). However, we now have more points
(x, y, 7). Because A(x, y, z) represents the same point as (x, y,2), we need to consider
the general eigenvector problem T (x, y, z) = A(x, y, z). Note that eigenvectors for any
nonzero eigenvalue represent fixed points. We obtain three equations: x + 3z = Ax,
y — 2z = Ay, and z = Az. The last equation forces A = I or z=0. In turn, the first two
equations force both A =1 and z =0. Thus every “ideal point” (x, y,0) is fixed by
a translation. Recall that ideal points are where Euclidean parallel lines meet and that
translations take a line to a line parallel to itself. We also showed that all the stable lines
of a translation in the affine plane are parallel, in this case [—%, —1, c]. As a collineation,
there is one more stable line: [0, 0, 1], the ideal line z = 0. All these stable lines can be
written in the form ['T2a, —a, c] and go through the point (3, —2,0). @

The ideal line [0, 0, 1] is stable for all similarities and affine transformations, for the

0 2 3
bottom row of each of their inversesis [0 0 1].Consider A= |2 0 0 [, which
0 0 1

reflects over the line y = x — z ([1, —1, —1]) and expands by a factor of 2 around the
fixed point (—1, —2, 1). There are two other fixed projective points, which we find
by solving the general eigenvector problem A(x, y, z) = A(x, y, z). There are three
values of A such that the determinant of A — Al is zero: 1, 2, and —2. The three
fixed points are (—1, =2, 1), (1, 1,0), and (1, —1, 0), respectively. To find the stable

lines we need to solve the general eigenvectof problem [a, b, c]A~" = Ala, b, c]. Verify
0 05 0
that A='=1] 05 0 —1.5 | and that the three eigenvalues are 1, 0.5, and —0.5,

0 o0 1
the multiplicative inverses of the eigenvalues of A. The corresponding stable lines are
[0,0, 1], [—1, =1, =3], and [1, —1, —1]. Verify that these lines are stable and intersect
in the three fixed points. @

Because collineations are 3 x 3 matrices, we can send the points X = (1, 0, 0),
Y = (0, 1,0), and Z = (0, 0, 1) to any three noncollinear points. However, as in The-
orem 6.4.1, we can do even more. We can send X, Y, Z, and U = (1, 1, 1) to any four
points, provided no three of them are collinear.

6 —1 0
Verify that the collineation | 9 1 0 | takes X, Y, Z,and U to (2,3, D, d,—-1,1),
3 -1 3

(0,0, 1), and (1, 2, 1), respectively.

Let Py, P, P3, and P4 be four points, no three of which are collinear, and 0, Q2, 03,
and Q4 be any four points. Then a unique collineation takes Py, P, P3, and P4 to Oy,
02, 03, and Qg, respectively, iff no three of 0y, 02, 03, and Q4 are collinear.

Proof. See Problem5. m
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In Chapter 4 we were able to distinguish different types of isometries by the fixed
points and stable lines of each. For example, rotations of any angle other than 180°
and 0° have one fixed point and no stable lines. Translations have no fixed points and a
family of parallel stable lines. Projective geometry has an additional line and the points
on it, which radically alter the existence of fixed points and stable lines. As collineations,
all isometries and, more generally, all affine transformations leave stable this added line.
Translations fix every point on this added line. Theorem 6.4.6 relies on linear algebra to
ensure the existence of fixed points and stable lines.

Every collineation of the projective plane has at least one fixed point and at least one
stable line.

Proof. To solve the general eigenvector problem A(x, y, z) = A(x, y, z) we find the
values of A for which the determinant of A — A7 is zero. As A — Al is a 3 x 3 matrix,
with A appearing in the three diagonal entries, the determinant (characteristic polyno-
mial) is a third-degree real polynomial in A. Every third-degree polynomial crosses the
x-axis and so has at least one real root. Thus every collineation has an eigenvalue and a
nonzero eigenvector, which is a fixed point. The same argument applies to the inverse
matrix, giving a stable line. m

0 -1 0
Example 3 The matrix | 1 0 0 | is a rotatory reflection when thought of as a spherical
: 0.0 ~1

isometry or three-dimensional Euclidean isometry. It rotates the sphere 90° around the
z-axis and reflects it over the equator (xy-plane). Note that as it is a spherical isometry,
no point is fixed. However, (0, 0, 1) is mapped to (0, 0, —1), which is the same projective
point. This fixed point is for the only real eigenvalue, —1. The only stable line is [0, 0, 1],
the equator or the ideal line. @

Recall from Section 6.3 that a conic is determined by five points, no three collinear.
Theorem 6.4.5 asserts that collineations are determined by four points and their images.
Surprisingly, despite this disparity, we can map every conic to every other conic, al-
though we can’t always specify where various points on one conic map onto the other
conic. Problem 9 illustrates this flexibility.

PROBLEMS FOR SECTION 6.4

1. a) Describe all 2 x 2 matrices that send (1, 0) to

2.

a) Find the projectivity [ b d] that takes 0 t0 0, 1

S U & W

to1,and 2 to x # % Verify that the harmonic set
H(01,2%) goes to H(0 1, x 57=). [Hint: Pick

a=x.]

b d
1 to oo, and 2 to k. Find the image of % Explain
why this image forms a harmonic set with 0, oo,
and k.

d) Find the projectivity [ ] that takes 0 to O,

. Prove Theorem 6.4.3. [Hint: See Theorem 4.3.1.]
. Prove Theorem 6.4.4.

. Prove Theorem 6.4.5. [Hint: See Theorem 6.4.1.]
. Recall Desargues’s theorem from Section 6.1:

If AABC and AA'B’'C' are perspective from a
point P, then they are perspective from a line.

Let A=(1,0,1), B=(1,1,1), C=(0,1,1),
=(2,0,1), B=(4,4,1), C'=(0,3,1), and
=(0,0, 1).

a) Graph these points. (See Example I, Sectlon 6.3.)
Find lhe intersections AB-A B’ AC - A /G, A'C

and BC - B'C B'C and verify that these points are

collinear.
a d g

b) Find the collineationa = | b e h | that fixes

c i
P and takes A to A’, Bto B’, anjcci C to C'. [Hint:
pick a = 12.] Verify that the line you found in
part (a) is stable under o. Show further that every
point on this line is fixed by a.

¢) Make a conjecture generalizing part (b) and relate
your conjecture to Desargues’ theorem.

/2 0 0

7. a) LelM:[ 0o -1 -1 ].FindM"and

0 1/2 -1/2
the image of the unit circle x2 + y2 — z2 =0
under M.
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b) Explain why [cos 6, sin 6, —1] are lines tangent
to the unit circle.

c¢) Convert the image in part (a) to nonhomogeneous
coordinates (z = 1). What type of Euclidean
conic is this image?

d) (Calculus) Use derivatives to show that [4k, —1,
—2k?] is tangent to the conic in part (c). Show
that the ideal line [0, O, 1] is also a tangent.

. If line k is tangent to conic C and o is any

collineation, prove that the image of k under o
is tangent to the image of C under «. [Hint: See
Problem 12 of Section 6.3.]

. Investigate the effect of the family of collineations

1 0 O
My, = [ 0 1 O:I on the conic
w 0 1

1 0 -1
C=l: 0o 1 O :l([hecirclexz+y2 —2xz=0).
-1 0 O

a) Find M;' and M, '" and the general image
M;'TCMy" of C under M.

b) For the following values of w, convert
M;'TCMy" to the equation of a conic in
nonhomogeneous coordinates (z = 1): w = %
—%, —— ,and —1.

¢) Graph the original circle and the conics of part
(b).

d) Which values of w in part (a) take the circle to
Euclidean ellipses? to hyperbolas? to parabolas?

e) Verify that the lines [1, 0, —2] and [0, 1, —1] are
tangent to the original circle by graphing them
with the circle.

f) Find the images of the lines of part (e) for the
values of w in part (b) and graph them with
the corresponding conics to verify that they are
tangents.

itself. Repeat for the point (0, 1) and the point

(1, 1). Use these results to explain why the only

2 x 2 matrices leaving these points fixed are of
A0

the form [ 0 A ]

b) Repeat part (a) with 3 x 3 matrices and the points
(1,0,0), (0, 1,0), (0,0, 1), and (1, 1, 1).

Let x = (x, 1) and oo = (1, 0). Recall from Sec-
tion 6.1 that H(0 1, x 5.=).

to 1, and 2 to % Verify that the harmonic set
H@O1,2 %) goes to a harmonic set.
b) Find the projectivity ‘; (ﬂ that takes 0 to 0,
ltol, and 2 to —. Why does the harmonic set
H(01,23)go to a harmonic set?

a

¢) Find the projectivity b 2 that takes 0 to 0, 1

Projective geometry originated as an extension of Euclidean geometry. In 1858 Arthur
Cayley provided the historically important construction of Euclidean distance and an-
gle measure within projective geometry. That is, he showed Euclidean geometry to be
a subgeometry of projective geometry. He also related the distance in spherical ge-
ometry to projective geometry but was unaware of any other geometries at that time.
Felix Klein in 1871 built on Cayley’s construction and other insights to show that both
hyperbolic and single elliptic geometries (see Chapter 3) were subgeometries of projec-
tive geometry. Klein’s construction led him to pick the names hyperbolic and elliptic.



