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Chapter 6 Projective Geometry

In particular, do the duals of the separation

axioms hold?

b) Il} analytic geometry, if m; and m, are the
bisectors of the angles formed by m3 and m4

then H (m;m,, mams). Investi

‘ . ! gate whether thj
relauop holds for the labeling of the lines givel;
lff)llm}!mg the construction of a harmonic set of,
1nes from Problem 7 of Section 6 i
e ion 6.1, with m; =

6.3 ANALYTIC PROJECTIVE GEOMETRY

Interpretation

Exercise 1

Example 1

Example 2

We develop homo, i
. geneous coordinates to represent analyti
by ' ) ytically all the points and lj
din[; tejs ZzzslgeOIT:etw and to emphasize their duality. In addition homI:)geneOl?;j é:)ﬂes
e us to consider projective transformations i o 5
: tions in Section 6.4 i
et ; . a ion 6.4. In Sectio
i g [t,:att twg coordinates aren’t sufficient to describe all points in the proje?:t? i
matio.ns - pter 4 we used three coordinates (x, y, 1) for points, enabling transf i
i o :;;)v;,/ :(131 p?lnts. 11;1 the process we demonstrated that row vectors [a bocri
s re (x, y, 1) is on [a, b, c] provided th e
7.5 n la, b, atax + by + c- 1 =0. In addi-
= duzlistho(\:/fed t.hat nonzero n'nultlpl.es [Aa, b, Ac] of [a, b, c] represent the same l(ijrclll
y of points and lines in projective geometry suggests using triples (x, y, ) f:):r.

( ) Z) C
- 3 L .
tor y Exaﬂlples 1 2 a“d 3 pIOVlde thlee WayS to view these pOlIltS Exalnple 3 18
the most lmp01 tant IeplCSeﬂtatIOIl. U&e leave it as an exercise to ver li y that the follo W lng

interpretation satisfies the first three axioms of Section 6.2

E{y ; pzo)tth1 (;n( ;he );:rOJectlve plane, we mean a nonzero column vector (x, y, z), where

ple,me, o meanxa, g ()):, Az) represent the same point for A 3 0. By a line in the projective

o Sa,m o NzZero rovs./ vector [a, b c], where [a, b, c] and [Aa, Ab, Ac] represent
e line for A # 0. A point (x, y, ) is on the line [a, b, c] iff ax + by + cz =0

Find the point on the lines [2, —1, 3] and [4, —2, 5.

Xi c:n t)t])m"l[(‘h()f a‘n ordina.ry ]-,E’uclidean point (x, y) as the projective point (x, y, 1) =
On ti] }1]", ; _en ideal points™ have O for their third coordinate. For example, the points
Oime( ine yO—'x (or [1, —1,0] = [A, —A, 0]) are of the form (x, x, 7). Note that the ideal
a il .:r : ;)f)t lnlsc r;(;::lng on l[l,]—l, 0], butfalso on all the Euclidean lines parallel to it
: , —1, c], or more familiarly, y = is o
reason in projective geometry to single out any line ())/r ;oinfa: “ci‘;i;(l)"’)vsr ?i?fft: o lfS g
any other; homogeneous coordinates make all points and lines equivalent Orem -

We can r.elat.e each point of the projective plane to two opposite points on a sphere. F

each projective point (x, y, z), there are two scalars A and —A such that (Ax kp A ) a:(l)c:
(—Ax, —)».y, —Az) have length 1 and so are on the sphere. Projective lines1 cz;rezspond
Fo great circles. Example 3 explains why the great circle corresponding to [a, b, c] is
in the plane perPendicular to the point (a, b, ¢). The identification of o osit:a soi t

on t‘he spher_e gives single elliptic geometry. (See Section 3.5.) The oli)rl:t dp(l)'m :
of single elliptic geometry match exactly the points and line; ;)f proj:ctiveS gi::)m;?rils

Example 3

Exercise 2

Example 4

Example 5
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Single elliptic geometry has distance and angle measure in addition to the projective

notions. @

Linear algebra in R3 matches projective geometry. A projective point is a one-dimen-
). The scalar A merely moves a point along this

sional subspace (a line through the origin
line. A projective line is a two-dimensional subspace (a plane through the origin). Recall
0or [a,b,c] - (x,y,2) =0.

that [a, b, c] contains points (x, y, ), with ax + by +cz=

The dot product of two vectors is 0 whenever the vectors are perpendicular. So [a, b, c]
must be the Euclidean plane through the origin perpendicular to the vector (a, b, ¢).
Linear transformations take subspaces to subspaces, so projective transformations have

a ready representation. @

Verify that the interpretation of Example 3 satisfies Axioms (i), (ii), and (iii) of a
projective plane from Section 6.2.

Three distinct points (p, g, r), (s, t,u), and (v, w, x) are collinear iff the determinant

p-s w
g t wlisO.
rou x
p s v »
Solution. Thethreepointsareontheline [a,b,cliff[a b cllg t wil= 0,
r u x

which gives a system of three homogeneous equations. From linear algebra, this system

has a nonzero solution [a, b, ¢] (that is, the points are collinear) iff-the matrix is singular

and the determinant is 0. @

Representing projectivities, harmonic sets, and separation analytically is easier if
we use two homogeneous coordinates for collinear points. We represent the points
on a line as (4, v), where (u, v) = (Au, Av), for A # 0. We postpone the treatment of
projectivities to Section 6.4 because they are a type of transformation.

The points on [1, —1, 2] are of the form (x, y, z), where x — y +2z= Oory=x+2z.
This last equation enables us to eliminate the y-value, so the two coordinates (x, z) are
sufficient to describe which point on this line we are considering. From the Euclidean
point of view, the point (x,1)=(Ax,A) corresponds to the real number x and (1,0) =
(A, 0) corresponds to oo or the ideal point. By solving the equation y = x + 2z for x or
z, we could eliminate either of these variables instead. These methods of determining
two homogeneous coordinates (and others) are compatible; they correspond in linear
algebra to changes of coordinates. @

6.3.1 Cross ratios

The concept of the cross ratio of four collinear points, initially explored by the ancient
Greeks for Euclidean geometry, provides the analytic key for both harmonic sets and
separation. We use the notationally easy form of the cross ratio given in Example 6
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Example 6

Definition 6.3.1

Interpretation

Exercise 3

Theorem 6.3.1

Projective Geometry

whenever possible. Theorem 6.3.1 shows that our analytic interpretation matches Axiom
(x), the most powerful separation axiom.

For subscripts as in Axiom (x), the cross ratio of four distinct collinear points X,
Xp» X, and Xq is R(a, b, c,d) = §=5 + 7=5. Recall that H(01, x52+). For ex-
ample, R(0,1,3, 3) = =575 + 572 = —1. Verify that for any x #0, 1, 0r 1 we have
RO, 1L,x,555)=~1. e

The cross ratio of four collinear points P = (p,q), S=(s,1), U = (u,v), and W =
(w, x) is

‘p u S u
RP,S, U, wy=19 % . If v
p w s w
q x L, X

Remark If g =t =v =x = 1, this formula reduces to the special case of Example 6.

For four collinear points P, S, U, and W, H(PS, UW) iff R(P,S,U, W)= —1 and
PS//UW iff R(P, S, U, W) < 0. Cross ratios, harmonic sets, and separation for lines
are given dually.

Suppose that a < ¢ < b < d. Use Example 6 to verify that R(a, b, ¢, d) < 0 and so
XaXb// XcXa.
Axiom (x) holds in the analytic projective plane.

Proof. Leta < b < c be real numbers. Then the homogeneous coordinates of the four
points of the axiom are X, = (a, 1), X, = (b, 1), X; = (c, 1), and X = (1, 0). Then

a b c b
1 1 1 1
R(Xq4, X, Xp, X) = a——l— = 1 ={a—-b)/-1)=({(c—-b)/-1)=(a—b)/(c —b).
c
1 O’ 1 0

As a < b < c, this fraction is negative and so X,X.// XX, as required. =

6.3.2 Conics

Projective geometry provides a unified way to study conics. The general equation
of a conic in usual coordinates is ax? + 2bxy + cy? 4+ 2dx + 2ey + f =0.1In homoge-
neous coordinates this equation becomes ax? + 2bxy + cy? 4 2dxz + 2eyz + fz2 =0.
Every term is now of second degree in the variables x, y, and z, so we say that it
is a homogeneous second-degree equation. (Homogeneous first-degree equations,
ax + by + cz = 0, represent lines.) Because a conic has a second-degree equation, it
can intersect a line in zero, one, or two points. Linear algebra makes the homogeneous
equation even more useful, as Exercise 4 illustrates. The matrix form explains why we
choose to have the factors of 2 in the general equation. However, not every such matrix
gives a conic, as Exercise 5 illustrates. Quadratic forms in linear algebra are closely tied
to conics and their generalizations. (See Fraleigh and Beauregard [3, Chapter 7].)

Exercise 4

Exercise 5

Interpretation

Exercise 6

Exercise 7
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. . . . 2
Show that a point P = (x, y,z) is on the conic with equation ax* + 2bxy + ¢y +
2dxz + 2eyz + f2 =0 iff PTCP =0, where PT is the transpose of P and C =
a b d

b ¢ e
d e f
2 -3/2 1
Verify that C = [ —3/2 1 —1/2 | has a determinant of 0 and represents the
1 —1/2 0

product of the two lines 2x —y=0andx — y +z=0.

By a conic we mean a symmetric invertible 3 x 3 matrix. Two such matrices represent
the same conic iff one is the multiple of the other by some real number A # 0. A point
P is on a conic C iff PTCP =0.

From a projective viewpoint, circles, ellipses, parabolas, and hyperbolas—the Eu-
clidean types of conics—are indistinguishable. However, if, as in Fig. 6.11, we arbi-
trarily designate one line k as an ideal line, hyperbolas intersect the ideal line in two
points, parabolas intersect it in one point, and circles and ellipses do not intersect it. (To
distinguish circles from ellipses requires measures of angles or distances.) We define a
tangent to a conic to be a line with only one point on the conic. (In Euclidean geometry
this definition fails, for the parabola y = x? and the hyperbola y = % each have only one
point of intersection with vertical lines x = b, but vertical lines aren’t tangents. For the
hyperbola we require b # 0.) The asymptotes to a hyperbola in Euclidean geometry are
simply tangents in projective geometry.

Verify x> — yz =0 and xy — z2 = 0 are the homogeneous equations for the conics
y=x?and y = )l( Explain why in projective geometry the (Euclidean vertical) lines
[1, 0, b] are not tangent to these conics. (Assume that b 7 0 for the second conic.)

Two distinct Euclidean circles intersect in at most two points, but Exercise 7 below
shows that two conics can intersect in more than two points. Five points, no three
collinear, are required to completely determine a conic.

Graph y = x? and x> + (y — 2)2 = 2 and find their intersections.

Figure 6.11
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12. Suppose that P is a point on the conic C. Claim: The

10. (Calculus) a) Write the equation y = x? in homoge-
line [ = PTC is tangent to C at P.

neous coordinates.

PROBLEMS FOR SECTION 6.3

1. a) Find the point of intersection of the lines C, and D, but there are only six different cross

[m,—1,b] and [m, —1, b']. Interpret this situation
in Euclidean geometry.

b) Verify that the line [a, b, c] on the points
(p,q,r) and (s, t, u) is given by (the transpose
of) ‘their cross product, or equivalently by

ratios. Use the coordinates in part (a) to find the
five other values of the cross ratios besides r. List
the orderings that have the same cross ratio, r, ag
the ordering A, B, C, D.

¢) Explore whether, for any four distinct collinear

b) Show that the lines [a, b, c] tangent to the
equation in part (a) satisfy the equation of the
line conic a? — 4bc = 0 as follows. First, pick
X0, a real number, and find the coordinates of the
point (xo, yo, 1) on the conic. Next use calculus to
find the equation of the tangent line. Now convert

a) Verify the claim by using the matrix form for
conics in Problems 10 and 11.

b) Show that P is on the line [ of the claim.

¢) Suppose that P and Q are two points on the
conic C and that / and k are their corresponding

[ q t \ PSP S e y points, the relationship of the six different cross this line to the form [a, b, c] and verify that it Ene? o [hﬁ Cl';'.m' Shoy thit - I;rntfhP].: Q
rou rou q t|| z ratios of part (b) holds. satisfies the equation a® —4bc =0. m);pc?;?rr:v i ytc:r;:cft:qlllllzuco:n'sc Or‘:v f)rtll)c'“olnz I::)lie:tm
is the determi : . . in ic i -
is the determinant of a 2 x 2 matrix. Describe d) Explore what values the cross ratio R(A, B,C, D) ¢) Graph y = x2 and selected tangents. Wiiteia proaf'of: fhs lainn.

how you can find the intersection of two lines.

. Follow Van Staudt’s coordinatization of Section 6.2,
using O = (0,0, 1), X =(1,0,0), Y = (0, 1, 0), and
U = (1, 1, 1). Find homogeneous coordinates for
Xa, Y, and P,y Find homogeneous coordinates for
the point of intersection of [0, 0, 1] and Z)—Fa_;.

. a) Verify that no three of points (0, 0, 1), (6,0, 1),
(3,3,1), and (8, 4, 1) are collinear. Find the
diagonal points of the complete quadrangle they
form and verify that these diagonal points are
not collinear. (See Problem 7 of Section 6.2.)
Use the interpretation of Example 1 to graph the
complete quadrangle and its diagonal points.

b) Pick two of the diagonal points of part (a), say, A
and B, and find the coordinates of the line k on
them. Find the intersections C and D of k with
the other two sides of the complete quadrangle.
Explain why the four points A, B, C, and D form
a harmonic set. Verify that they form a harmonic
set by using a cross ratio.

. Use Example 6 to verify Axioms (v), (vi), and (vii)

and Theorem 6.2.1, part (iii).

. a) Illustrate Axiom (viii) by using five points on a
horizontal line. If the coordinates of the points,
from left to right, are a, b, c, d, and e, how do
these letters match the letters of the points in
the axiom? Use the form of the cross ratio in
Example 6 to verify Axiom (viii) for the case in
your drawing.

b) What other orderings of the five points are
compatible with the hypothesis of Axiom (viii)?
Verify Axiom (viii) for these other cases.

. Let A=(1,0), B=(0,1), C=(1,1), and D =

(r, 1).

a) Verify that R(A, B,C, D) =r.

b) There are 24 orderings of the four points A, B,

can have for three distinct points, with one of
them repeated.

- a) In ordinary analytic geometry y = x/(x + 1)

is a hyperbola with asymptotes y = 1 and

x = —1. Convert these equations to homogeneous
equations. Find the ideal point of each asymptote
and verify that it is the intersection of the
asymptote and the conic.

b) Find the asymptotes of x*> — y?> = 1 and repeat
part (a) for this conic.

¢) Convert the equation of the parabola y = x> — x
to homogeneous form and verify that the ideal
line [0, O, 1] has one point of intersection with it.

. Explain why a general point on x% + y2 — z2=0

(the unit circle) is of the form (cos «, sin a, 1).
(In particular, why can you always choose z = 17)
Use analytic geometry- to find the homogeneous
coordinates of the line tangent to this circle at this
point. [Hint: The coordinates of these tangents and
their points of tangency have a remarkable property.
(The set of tangents forms a line conic, the dual of a
point conic, which is called a conic.)]

. a) Show the general equation for the family of con-

ics through the four points (1, 1, 1), (1, —1, 1),
(=1, 1, 1), and (—1, —1, 1) to be ax? 4 cy* +
fz2=0,wherea+c+f=0.

b) Use Example 1 to graph the three degenerate
conics through these four points and find their
equations. (Each is a pair of lines.)

¢) Let f = 1 and pick specific values for a and c.
Graph the resulting conic.

d) Show every point (p, g, r) to be on just one of

the conics in the family of part (a), including the

degenerate ones of part (b).

e) What types of Euclidean conics are in the family
of part (a)?

11.

(Calculus) Repeat Problem 10 for the hyperbola
y =1 and the corresponding line conic 4ab — ¢*.
Explain the similarities in these problems from a

projective viewpoint.

d) Show that all tangents / satisfy the equation of
the line conic /C~ 1T = 0.



