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6.2 AXIOMATIC PROJECTIVE GEOMETRY

Axioms 6.2.1

Theorem 6.2.1

Definition 6.2.1

Definition 6.2.2

Exercise 1

Example 1

In this section we develop axiomatically some elementary properties of projective
planes. (For a more thorough axiomatic development, see Coxeter [2] or Tuller [9].)
The first five axioms describe the minimum relations of points, lines and harmonic sets.
(Recall that we defined harmonic sets in Section 6.1 in terms of points and lines.) The
separation axioms, which appear later in this section, provide a structure of the points
on a line analogous to the notion of order. The undefined terms are point, line, on, and
separate.

i) Two distinct points have exactly one line on them.
ii) There are at least four points with no three on the same line.
iii) Every two distinct lines have at least one point on both lines.

iv) Given three distinct points P, Q, and R on a line k, there is a unique point S
on k, distinct from P, Q, and R, such that H(P Q, RS).

v) If H(PQ, RS), then H(RS, PQ).

i) Two distinct lines have exactly one point on both lines.
ii) Every line has at least four distinct points on it.
iii) If H(PQ, RS), then H(PQ, SR).

Proof.  See Problem 1 for parts (i) and (iii). For part (ii), let k be any line. By Axiom
(ii) there are four points A, A}, Ay, and A3 and at least one of them, say, A, is not on k.
Consider the lines k; on A and A;, for i = 1,2, 3. By Axiom (ii) these lines are distinct.
By part (i) these lines each have one point in common with k, which gives three distinct
points on k. Axiom (iv) guarantees the fourth point. m

The point on the lines k and [ is denoted k - /. Points on the same line are collinear, and
lines on the same point are concurrent.

We follow Karl Van Staudt’s method of using harmonic sets to construct and co-
ordinatize infinitely many points on a line and the plane without any dependence on
distance. The subscripts reflect Problem 9 (b) of Section 6.1, which showed that two
given points, their Euclidean midpoint, and the ideal point formed a harmonic set.

Given three distinct collinear points Xg, X, and X, define X, to be the point such
that H(XX,, XoX>2). Given X, and X, |, define X, > to be the point such that
H(XXn41, XnXn42). Given X, and X, define X(44p)/2 to be the point such that
H (XX (a+b)/2: XaXp) (Fig. 6.6).

Define points X_,, for n a positive integer.

Figure 6.6 illustrates the placement of various points X,. If X is the ideal point on the
horizon of a perspective painting, this construction shows how to place points so that
they look equally spaced. By Problem 4, the sequence of Euclidean distances d(X,, X)

forms a harmonic sequence, such as 1, % % %, e, @
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Axioms 6.2.2

Theorem 6.2.2

Theorem 6.2.3

o
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Figure 6.6

The first five axioms don’t guarantee that all the points X, from Definition 6.2.2
are distinct. (Indeed, in Chapter 7 we demonstrate that a finite projective plane with just
four points on a line satisfies all five axioms.) Theorem 6.2.3 depends on the following
separation axioms to ensure that the X, are distinct. We write P Q//RS to denote that P

and Q separate R and S. Separation in projective geometry takes the role of Euclidean
geometry’s betweenness.

Separation Axioms

vi) If PQ//RS,then P, Q, R, and S are distinct collinear points, PQ//SR and
RS//PQ.

vii) If P, O, R, and S are distinct collinear points, then at least one of the
following holds: PQ//RS, PR//QS,or PS//QR.

viii) If PQ//RS and PR//QT, then PQ//ST.
ix) If H(PQ, RS), then PQ//RS.

i) If PQ//RS,then QP//RS, QP//SR, RS//QP, SR//PQ, and SR//QP.

ii) If A, B, C, and D are distinct collinear points, then exactly one of the
following holds: AB//CD, AC//BD,or AD//BC.

Proof: See Problem3. =

If X, and X, are determined from Definition 6.2.2 and Exercise 1 and p # ¢, then X,
and X, are distinct.

Partial Proof. Show that, if a < b < ¢ for nonnegative integers (and so X,, X, and
X are determined from the definition), then X X;,// X, X .. Axiom (vi) then forces these
points to be distinct. The remaining cases are similar.

Use induction to show that X X;,// X,X., where 0 <a < b < ¢ < k + 1 holds for
all integers k > 1. We have H(X X, X¢X32), so Axiom (ix) gives the case k = 1. Now
assume that the case 0 <a<b<c<k+1holdsandlet0<a<b<c<k+2.1If
¢ <k +2, we are back at the induction hypothesis. Suppose that ¢ = k + 2. Then,
by definition, H (X X1, Xt Xi+2). Axiom (ix) gives X Xy11// Xy Xi42. If a =k, then
b=k +1 and we are done. If 0 <a <k, we have XX;// XX, by the induction

6.2 Axiomatic Projective Geometry

JEAN VICTOR PONCELET

Jean Victor Poncelet (1788-1867) grew up in France during revolutionary times. He
studied at the Ecole Polytechique under the influence of the legendary Monge. He then
became an officer in Napoleon’s army in the ill-fated campaign against Russia. He spent
a year during 1813 and 1814 in a Russian prison. In prison he had the opportunity to
reflect and write. He reconstructed his geometric education from memory and went on to
discover many new results. Poncelet worked for various French governments after the fall
of Napoleon and occasionally taught.

Projective geometry became a separate subject and moved to prominence with
publication in 1822 of Poncelet’s treatise on the subject, a revised and expanded version
of his prison musings. Poncelet was an outspoken advocate of the synthetic approach,
following the dictum of Lazare Carnot: “". . . to free geometry from the hieroglyphics
of analysis.” He realized the power of the general analytic approach compared to the
isolated proofs of classical geometry. However, he felt that analytic geometry gave answers
without giving insight. He developed projective geometry to provide general methods
within the synthetic tradition. In the process he rediscovered many of the properties
found previously by Desargues and others but then forgotten. He looked for properties of
figures preserved by perspectivities. He was the first to realize the importance of duality.

The principle of continuity, which he used implicitly as an axiom, provided a powerful
method for generalizing many results from understood cases to analogous cases. Thus a
shape can pass continuously from circles and ellipses to parabolas to hyperbolas, much as
the shadow of a lamp shade on a wall does as the lamp is tilted. The projective properties
of tangents and other objects transfer along with the changing curves. For example, an
asymptote of a hyperbola becomes just a special type of tangent. He even extended the
principle of continuity to explore imaginary intersections of lines and conics that don't
intersect in real points. Thus Poncelet initiated the study of complex projective geometry,
although without using coordinates. :

hypothesis. Axiom (viii), with P = X, O = X441, R = Xk, S = X402, and T = X,
gives X Xyy1//Xk42X4, which Theorem 6.2.2 converts to X X;41//XaXky2. If b=
k + 1, we are done. Problem 8 considers the remaining case,a <b <k +1. m

The final axiom, the continuity axiom, extends the strategy of Theorem 6.2.3 to
ensure that a projective line includes all points X,, where r is a real number, together
with the additional point X. Figure 6.7 illustrates how to match all but one of the points
on a circle with the points on a line. In effect the final axiom ensures that the points on
a projective line are arranged like the points on a circle. Visualizing lines in perspective
drawings as circles is difficult because movement can be along the line in two directions,
but only one seems to go toward the horizon. However, railroad tracks appear to intersect
at the horizon in both directions. Theorem 6.2.1 forces each line to intersect the horizon
(ideal line) in just one point, so these two directions must somehow meet at the same
ideal point on the horizon, completing a circle. The (topological) arrangement of points
of the entire projective plane is the same as the points in single elliptic geometry. (See
Section 3.5.)
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Axiom 6.2.3

Xo=Py . Xy X,

Figure 6.7

continuity Axiom Given any three points X, Xo and X, on a projective line, there
Is a one-to-one correspondence between the real numbers r and all the points X, on the
line except X such that b is between a and ¢ iff X, X.//XpX.

Section 6.1 described the projective plane in terms of the familiar Euclidean plane
together with an added “horizon,” a line of ideal points. Based on the axioms presented
we can now confirm that description. From Axiom (ii) we  can start with four points
0, X, Y, and U, no three of which are collinear. Think of OX and OV in Fig. 6.8 as
the x- and y-axes and O as the origin for the points of the Euclidean plane. Axiom 1 (X)
and the discussion preceding Theorem 6.2.2 enable us to fill out the lmes 5)? and OY
provided we can ﬁnd three points on each For OX we use O = X, OX YU X and
X. Similarly, for OY we use O Yg_,_QY XU = Y| and Y. Thus we have all the points
X, and Y, on the “axes” OX and OY. Next we include the points P, corresponding
to the Euclidean plane using two wbers just as coordinates in analytic geometry. In In
Fig. 6.8, P, ab 1 is the intersection of X, Y and XY). For any point P not on the line Xy Y, PY
intersects OX at some point X, and PX intersects O at some point Yp, which gives
P = P,p. Thus the points not on line XY look like the Euclidean plane. In effect, Xy
is the line of ideal points. However, the points on XY don’t have natural coordinates in
this procedure. Indeed, we used up all possible pairs (a, b) to label the points P, not on

Y
N\
Y,
Y, U
X
]0 X Xq

Figure 6.8
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s = . .
X Y. In Section 6.3 we present homogeneous coordinates, which are an elegant solution
to this problem, involving the use of three coordinates for each point.

6.2.1 Duality

Exercise 2

Theorem 6.2.4

Poncelet noticed that, without parallel lines, lines have the same properties as points in
projective plane geometry. That is, the words point and line in any axiom or theorem
of projective geometry (and any definitions used in this statement) can be exchanged to
get another theorem, called the dual. For example, the dual of “Every line has infinitely
many points on it” is “Every point has infinitely many lines on it.” Similarly, collinear
and concurrent are dual concepts, as are complete quadrangles and quadrilaterals.
People think about points differently from lines, so this structural similarity was (and
is) hard to see. However, duality is an aesthetically pleasing property, which doubles the
number of theorems available, often giving us theorems we might not have imagined.

State the duals of Axioms (i), (ii), and (iii).

The duals of Axioms (i), (ii), and (iii) hold.
Proof. See Problem 6. m

Next we develop the duals of harmonic sets of points and separation of points.
The labeling of Fig. 6.9 provides the key to connecting a harmonic set of points
H(PQ, RS) and a harmonic set of lines H(pq, rs). In particular, a harmonic set of
points H(P Q, RS) and a point A not on their line determine a harmonic set of the lines
through A and these points. Conversely, a harmonic set of lines H (pq, rs) and a line not
on their common point determine a harmonic set of points. Similarly, Definition 6.2.3
uses the separation of points to define the separation of lines. (We assume that the def-
inition is well-defined; that is, different choices of the line k give the same result of
whether or not pg//rs or H(pgq, rs). See Tuller [9] for more information.)

Figure 6.9
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Definition 6.2.3

Theorem 6.2.5

Exercise 3

Projective Geometry

Let p, g, r, and s be concurrent lines on O, k be any line not on O, and P = Pk

O=q-k,R=r -k, and S =5 - k. Define pq//rs iff PQ//RS and H(pq, rs) iff
H(PQ,RS).

The duals of Axioms (iv)—(x) hold.

Proof. We prove the dual of Axiom (iv). (See Problem 6 for the others, which are

similar.)

The dual of Axiom (iv) states, “Given three distinct lines p, ¢, and r on a point O
there is a unique line s on O, distinct from p, g, and r, such that H( pq,rs).” To prové
this axiom, we start with the three lines p, g, and r on O. Let k be any line not on O.
By Axiom (iii), k intersects the lines p, ¢, and r in the points P, Q, and R, respectively.
By Theorem 6.2.1, P, Q, and R are distinct. Hence the hypothesis of Axiom (iv) holds,
and there is a uniqug_ggint S on k distinct from P, Q, and R such that H(P Q, RS). By

Theorem 6.2.1 s = OS is distinct from p, g, and r. Definition 6.2.3 gives H(pq,rs).

Finally, note that, as S is unique, s also is unique. m

Once we have the duals of the axioms, the duals of all the theorems follow imme-
diately. Indeed, we could mechanically write the proof of a dual by switching the words
point and line and so on throughout the original proof.

Write the duals of Theorems 6.2.1, 6.2.2, and 6.2.3.

6.2.2 [Perspectivities and projectivities

Theorem 6.2.6

Definition 6.2.4

Exercise 4

Theorem 6.2.7

The notion of a perspectivity originates in perspective drawing. Recall that a perspec-
tivity maps the points P; of one line to the points Q; of another line, using a point O
such that for each i, O, P;, and Q; are collinear. Theorem 6.2.6 shows that harmonic

sets and the relation of separation are preserved in perspectivities and so in perspective
drawings.

A perspectivity preserves harmonic sets of points and the relation of separation. That
is, if a perspectivity from O maps the collinear points P, Q, R, and S to the collinear
points P’, ', R', and §" and H(P Q, RS), then H(P'Q’, R'S"). Similarly, if PQ//RS,
then P'Q’//R’S’.

Proof. See Problem9. =
A composition of perspectivities is a projectivity.

Explain why Theorem 6.2.6 applies to projectivities as well as perspectivities.

By Problem 2 of Section 6.1, there is a projectivity that maps any three collinear
points to any three collinear points. Theorem 6.2.7 reveals that the images of these three
points determine the images of all other points on the original line.

Fundamental Theorem of Projective Geometry A projectivity of a line is com-
pletely determined by three points on the original line and their images.

Exercise 5
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Proof. 'WLOG call the three points on the original line X, Xo, and X, and suppose
that the projectivity takes them to Y, Yo, and Y}, respectively. Theorem 6.2.5 ensures that
any point X , described in Theorem 6.2.3 must go to Y. Problem 2 and the continuity
axiom extend this process, matching each X, with ¥,. m

Define and illustrate the concept of a line perspectivity taking concurrent lines to con-

current lines. Write the duals of Theorems 6.2.6 and 6.2.7.

PROBLEMS FOR SECTION 6.2

1. a) Prove the rest of Theorem 6.2.1.

b) What other arrangements of P, O, R, and S
form harmonic sets for H(P Q, RS)? Prove your
answer.

2. Describe all numbers g such that an X, is con-

structed according to Definition 6.2.2. Explain why
all positive real numbers r can be written as limits of
these q.

. Prove Theorem 6.2.2. [Hint: For part (ii) use Axiom

(viii).]

. Let r represent the Euclidean point (r, 0).

a) In Problem 8 of Section 6.1, you saw that
H(0 1, a 5=). Use similarity to show, for k > 0,
H©Ok,ak 3%5).

b) Show that H(0 17, & 743)-
¢) Use part (b) to show how to construct poles
that appear equally spaced in a perspective

painting.

. Art books give various methods of constructing

equally spaced poles in a perspective painting. (See
Powell [6].) Explain how the following construction
blends harmonic sets and Euclidean ideas. Start
with the horizon line, the pole nearest the viewer,
and the base of the next pole drawn in (Fig. 6.10).
Extend line b connecting the two bases to the horizon
line to find the appropriate ideal point. Draw line ¢
connecting this ideal point with the top of the first
pole. All the poles will have their bases on b and
tops on . Draw the second pole parallel to the first
pole. Draw line p through the ideal point parallel to
the poles. Draw line k) from the top of the first pole
through the base of the second pole to point P on p.
Line k, connecting the top of the second pole with P
intersects b at the base of the third pole. Continue as
in Fig. 6.10 to determine the other poles.

DN

ky

Horizon

k3

Figure 6.10

. a) Prove Theorem 6.2.4.

b) State the duals of Axioms (v)—(x).
¢) Prove the duals of Axioms (v)—(x).

. a) In acomplete quadrangle with vertices T, T3, T3,

and Ty, the diagonal points are the three points of
4 5 N 5 L, e o Ay
intersection of the “opposite” sides: 11T - T314,
> > P > -

T \T; - 5Ty, and T\T4 - T, T3. Draw a picture to
illustrate this situation and prove that the diagonal
points aren’t collinear.

b) Define the dual concept of part (a) and illustrate
the dual theorem.

. Complete the proof of Theorem 6.2.3. [Hint: Use

Axiom (viii) with P = X ]

. Prove Theorem 6.2.6 [Hint: H(((_)-I3 b_é 5_13 53‘).]
10.

For a fixed Euclidean point P, let k; be the line on
P having slope i and let k be the vertical line
through P.

a) Does this labeling of lines correspond to
the labeling of points on a projective line?
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In particular, do the duals of the separation

then H (mmy, mymy). Investigate whether this
axioms hold?

relation holds for the labeling of the lines given,
b) In analytic geometry, if m; and m; are the fp]]owing the construction of a harmonic set of

bisectors of the angles formed by m3 and my, lines from Problem 7 of Section 6.1, with m =
and my = ko.



