5.6 FRACTALS

Historically, geometry has focused on relatively simple, ideal shapes: circles, triangles
polyhedra, and the like. However, even a cursory glance at nature reveals a’vast agrra ;
of shapes unrelated to these traditional objects. Benoit Mandelbrot, the originator o)ilr
fra'ctals, found geometric structure underlying complicated natural s}lapes. In 1975 he
coined the word fractal to describe the convoluted curves and surfaces that can be used
to model natural shapes that had previously seemed beyond mathematical study.
Mathematicians initiated the abstract study of curves related to fractals before 1900,
In 1904 Helgc von Koch defined the Koch curve (Fig. 5.45) as the limit of an infinite
process, illustrated in Fig. 5.46. Starting with the motif at the top of Fig. 5.46, we replace
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Figure 5.45 The Koch curve. Figure 5.46 Iterations leading to the Koch

curve.

each of its line segments with smaller copies of the motif. The middle curve shows the
first iteration, and the bottom curve shows the second iteration. After infinitely many
iterations we arrive at the Koch curve, which has the property of self-similarity: The
entire curve is similar to a part of the curve.

Show the Koch curve is infinitely long.

Solution.  Suppose that the original motif in Fig. 5.46 has a length of 1 unit. After
one iteration, there are four copies of the motif, each one-third as long, for a length of
4/3 ~ 1.3 units. The second iteration has length (4/3)% &~ 1.8 units, and, in general, the
nth iteration has length (4/3)" units, increasing in length as n increases. The length of
the Koch curve is lim,_, o (4/3)" = 0o. Note that the Koch curve is enclosed in a finite
area despite its infinite length. e

Explore why the method of IFS in Section 4.4 produces the same curve as the method
Koch used.

Mandelbrot noticed that many real phenomena, such as coastlines, mountains, and
lungs, have a roughly self-similar shape: The smaller features of these objects have the
same overall bumpiness as the larger features. Of course, no part of the coastline of
France will exactly replicate the entire coastline. Furthermore, no real shape can exhibit
even approximately self-similar shape at the subatomic level. Thus exact self-similarity
is too limited to model nature. Mandelbrot uses the term statistical self-similarity to de-
scribe approximate similarity over a range of scales. He avoids an exact mathematical
definition of this concept because such a definition would apply only to mathemati-
cal objects, defeating his purpose. Computers can readily draw statistically self-similar
shapes by modifying the iterations at smaller scales with randomly generated fluctua-
tions. The resulting graphics often look strikingly realistic and support the usefulness of
statistical self-similarity However, Mandelbrot realized the need for more
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BENOIT MANDELBROT

Intuition is not something that is given. I've trained my intuition to accept as
obvious things which were initially rejected as absurd and I find everyone can do
the same. [Fractals] provide a handle to representing nature, and intuition can be
changed and refined and modified to include them. —Benoit Mandelbrot

Benoit Mandelbrot (1924-) is the leading proponent of fractal geometry, which he
pioneered. The chaos of World War II disrupted his life and his education, but his well-
developed geometric intuition helped him to complete a doctorate in mathematics.
His interests ranged over a variety of unusual aspects of mathematics, physics, and
engineering, including noise in electrical transmissions, which others had thought was
simply random. Mandelbrot found that the frequency of noise measured in second-
long intervals reassembled the frequency at longer intervals. Slowly he found other
phenomena with a uniformity under change of scale, or what he called statistically self-
similar or fractal. He collected examples of fractal behavior much the way naturalists
collect specimens.

Mandelbrot’s interest in the application of fractals is coupled with an intense interest
in mathematical ideas, although he is much less interested in mathematical proof. He
draws on the results of others, coupled with his remarkable visual intuition and stunning
computer graphics, to build new mathematical ideas and conjectures. He helped pioneer

the use of computers to draw fractals and to approach mathematics as an experimental
field.

structure if the mathematics of self-similarity is to lead to new insights, not just inter-
esting graphics. ’

Developed in 1919, the Hausdorff dimension provides a measure of how convoluted
mathematical shapes are, and Mandelbrot modified it to measure real objects. Felix
Hausdorff (1868-1942) noted a relationship between dimensions and the growth in the
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Figure 5.48

number of units as the measuring scale decreases. Figure 5.48 illustrates the intuition
behind Hausdorff’s approach. If we divide each side into three equal pieces, a line
segment has 3 = 3' smaller segments, a square has 9 = 32 smaller squares, and a cube
has 27 = 33 smaller cubes. The dimension appears as the exponent. The smaller pieces
are similar to the originals by a scaling ratio of r = % (Hausdorff’s technical definition
uses analysis. See Falconer [5].)

Create drawings analogous to Fig. 5.48, with each side divided into four smaller units,
sor = %. Verify that the line segment has 4! smaller segments, the square has 4? small
squares, and the cube has 43 smaller cubes.

We can generalize Fig. 5.48 and Exercise 2: The number of units is proportional to
n=(1/ r)d , where d is the dimension and r is the scaling ratio. If we take logarithms
and solve for d, we obtain the equation for the dimension:

d=1logn/log(l/r). (5.3)

Verify that Eq. 5.3 for the dimension d holds for the line segment, square, and cube of
Fig. 5.48 for any choice of r.

Hausdorff applied his notion to more interesting shapes than line segments, squares,
and cubes. Thus, in Fig. 5.49, we can approximate the circumference of a circle with
increasingly smaller units. As a curve, a circle is essentially a one-dimensional object.
Thus halving the length of the units approximately doubles the number of units. None
of the values log n/ log(1/r) exactly equals 1, but as r goes to 0, the limit equals 1.
For simple shapes, such as a circle or even the Koch curve, Eq. 5.3 (or its limit as
r — 0) is sufficient to determine the Hausdorff dimension. More complicated sets of
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Figure 549  Estimating a circumference with different unit lengths. As
the unit length decreases (r — 0), the estimate r - n approaches 27 R.

points require Hausdorff’s exact definition. Using analysis, Hausdorff proved that every
nonempty subset of R* has a unique Hausdorff dimension of at most k.

Find the Hausdorff dimension of the Koch curve.

Solution. In Example 1 a scaling factor of r = % gives n = 4 times as many units.
Then Eq. 5.3 gives d =log 4/ log 3 = 1.262. Verify that a scaling ratio r = % = (15)2
gives the same value of d. The Koch curve is too convoluted to be measured by the one-
dimensional unit of length because it is infinitely long. However, the curve has an area of
0, so the curve isn’t two-dimensional. The value log 4/ log 3 is the Hausdorff dimension,

indicating that the convoluted Koch curve is between a line and a surface. ®

Unfortunately, the Hausdorff dimension doesn’t apply to real shapes. In 1961,
Lewis Richardson published a study of the estimated length of coastlines according to
maps of different unit lengths. The estimated lengths differed widely, but Richardson
found a function of the lengths in terms of the unit lengths. Mandelbrot recognized that
Richardson’s equation fits the intuition behind the Hausdorff dimension. (Richardson
apparently was unaware of Hausdorff’s work.) In Richardson’s equation, we replace the
original uninterpreted exponent with 1 — d to relate it to d, the Hausdorff dimension,
to get

L(f)=c(f),

where f represents the unit length, L( f) is the estimated length (or area) of the object
for that value of f, and c is a constant, depending on the amount of the object measured.

In the original motif of the Koch curve (see Fig. 5.46) let each segment have a length
of fi= %. Then the four segments give L(f;) = 1 as an estimated length of the Koch
curve. In the first iteration when f, = % . %, the 16 segments give L(f,) = %‘. In the
second iteration when f, = é . %, L(f3)= 19—, and so on. We solve for d in Richardson’s

equation by using two values of f. With f, we get 1 = c(}‘)"d, and with f, we get

Example 4

Exercise 4
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The exponent 1 — d in Richardson’s equation isn’t as mysterious as it may seem.
For any unit f, the estimated length L(f) of a self-similar curve should be the number
of units times their length. Moreover, the number of units is proportional to n = (})d =
(})d. Thatis, L(f)=c-n- f=c-(1/f)*- f=c- 174 We want to solve Richard’s
equation for d, based on empirical values for f and L(f). With two unknowns, ¢ and
d, we need two values of f and L(f). From L(f}) = c(f1)! ™% and L(f2) = c(f2)' ™,
we find L(f1)/L(f2) = (fi/f2)'~* and finally

| loglLU/LU]
log(fi/f)

Figure 5.50 shows the coastline of England and Wales from Bristol to Liverpool. If we
estimate the length of this coastline by using f; = 57-mi segments, we need 5 seg-
ments, so L(f]) ~ 285 mi. For f, =28.5 mi, we need 12% segments, so L(fy) ~
356 mi; f3 = 14.25 mi gives 32 segments and L(f3) ~ 456 mi. As we shorten the
unit length, we can follow the contour better, taking into account more and more
of the multitude of peninsulas and bays. When we use fj and f,, Eq. 5.4 gives
d=1—10g(285/356)/ log(57/28.5) =~ 1.32. e

d= (5.4)

Verify that d ~ 1.36 when you use f; and f3 and d ~ 1.34 when you use fj and f3.

The values of d that Richardson found for coastlines are remarkably stable over a
range of scales f. (Such values can’t be stablé over all possible scales unless the object

Liverpool

Bristol

Figure 5.50 The mapped coastline of Wales and part of England and
approximate outlines produced by using segments of different lengths.
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is perfectly self-similar. The range of scales depends on the object studied.) Mandelbrgg
calls this empirical value the fractal dimension to distinguish it from Hausdorff’s gp.
stract definition. Mandelbrot and others have estimated fractal dimensions for a variety
of natural curves and surfaces. He avoids defining a fractal, but the following provi-
sional definitions are helpful. Example 2 illustrates how self-similar shapes, such as the
Koch curve, can have unexpected dimensions. Self-similarity gives an exact number of
copies, n, for an appropriate scaling ratio, r. More convoluted shapes generally have
more small copies at a given scale and so have higher dimensions.

Provisional Definition A fractal curve has fractal dimension greater than 1. A
Jractal surface has fractal dimension greater than 2.

Fractals provide a good model for the lungs. The trachea splits into the bronchial
tubes, which in turn split into shorter and narrower tubes. In addition, the embryonic
development of the lung is an iterative process The convoluted surface of the
lung greatly increases its area while keeping its overall volume small. The large surface
is biologically essential because the amount of carbon dioxide and oxygen that the lungs
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can exchange is roughly proportional to their surface area. Using a light microscope,
biologists found approximately 80 m? of surface area in a lung (roughly the floor
space of a small house). The higher magnification of an electron microscope yielded
approximately 140 m?2. This increase in area at higher magnification corresponds to the
measurements given in Example 4. Scientists have estimated the fractal dimension of
a lung to be 2.17. Blood vessels, kidneys, the liver, and other organs have good fractal
models. )

Although fractals provide insightful models, scientists are hoping for more than
explanations of already known facts. For example, why is the fractal dimension of a lung
2.17? After all, a higher dimension would give even more surface area. Perhaps higher
dimensions impede the free passage of air or blood in the lung. Questions such as these
provide ample challenges for research in the applications of fractals. (See Mandelbrot

[12].)

PROBLEMS FOR SECTION 5.6

1. For each motif of the fractal curve given, sketch

several iterations.

a) A stylized tree, where each branch splits into two
others half as long.

b) A stylized tree, where each branch splits into
three others half as long.

¢) A Cantor set, whereby you divide a line segment
into three equal pieces and remove the middle
piece and iterate with the remaining pieces.

d) A modified Koch curve, with a square on the
middle third of a line segment, rather than a
triangle.

e) A modified Koch curve, whereby you divide a
line segment into fourths and construct squares
on the alternate sides of the two middle fourths.

f) A Sierpinski gasket, whereby you divide a
triangle into four smaller triangles by connecting
the midpoints of the sides, remove the middle
triangle, and iterate with the remaining triangles.

. Find the Hausdorff dimension of the fractals in

Problem 1.

. Investigate what happens to the figures and the

fractal dimension when you increase the number
of smaller copies in the fractals in Problem 1(b) and

1(e).

4. For each motif for a fractal surface given, sketch

the first and second iterations and find the fractal
dimension.

a) A “Koch pyramid,” whereby you divide a
triangle into four smaller triangles, as in 1(f),
but construct a triangular pyramid on the middle
triangle and iterate with each of the smaller
triangles and the faces of the pyramid.

. b) A “Koch cube,” whereby you divide a unit square

into nine smaller squares, construct a cube on the
middle square, and iterate as in part (a).

¢) A Menger sponge, whereby you divide a unit
cube into 27 smaller cubes, remove the center
cube, and iterate with each of the 26 remaining
smaller cubes.

. a) Use a geometric series to find the total area of the

infinitely many squares in Problem 1(d).

b) Repeat part (a) for the total volume of cubes in
Problem 4(b).

¢) Repeat part (a) for Problem 4(c) to find the
volume remaining in the Menger sponge.

. You can estimate the fractal dimension of the

coastline of Norway using the map shown in Fig.
5.52 by using different length line segments. Start at
Oslo and lay out first 1-in., then %-in., and then 4l-in.
line segments along the coast to Bergen. Then use
Eq. 5.4 to calculate the fractal dimension. On this
map, 1 in. & 50 mi.
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Figure 5.52  The mapped coastline of southern Norway.

PROJECTS FOR CHAPTER 5

1. Design your own wallpaper patterns by hand or use
software, such as TesselMania [9] under Suggested
Media.

2. Which types of frieze patterns and wallpaper patterns
can be formed with mirrors? Arrange the mirrors in
various ways facing one another. Place symmetric
and asymmetric designs in the region between the
TNIITOTS.

3. Investigate symmetry in the art of M. C. Escher. (See
Schattschneider [16].)

4. Investigate symmetry in weaving. (See Pizzuto [14].)

5. Find examples of actual wallpaper and classify
them. Certain symmetry types of wallpaper patterns
predominate. Investigate the reasons, including
aesthetic ones, that underlie the choice of symmetry
in wallpaper.

6. Investigate symmetry in the art of various cultures.
(Wade [20] provides a large variety of examples. For
Islamic art, see El-Said and Parman [4].)

7. Investigate tilings of the plane, which generalize
wallpaper patterns. (See Griinbaum and Shephard
[81.)

8. Investigate the symmetries of continuous (nondis-
crete) frieze and wallpaper patterns. Try to classify
types of such patterns.

9. In many cultures circular friezes appear as ornaments
on cups and other cylindrical objects. Circular friezes
replace the translations of friezes with rotations
about a vertical axis. The seven frieze groups become
seven subgroups of D—;,

a) Draw a frieze with symmetry group pmm2 on a
sheet of paper. Roll the paper into a cylinder
to create a circular frieze. Describe how the
symmetries of the frieze become symmetries
of the circular frieze. Explain why this circular

frieze has I, for its group of symmetries. What
determines the value of n that a circular frieze

has? Why do the symmetries of other circular
friezes form subgroups of some D;?

10.
11.

12.

13.

14.

15.

b) For each of the six other types of friezes, make
a corresponding circular frieze pattern. Describe
the rotations, mirror reflections, and rotatory
reflections of these circular friezes.

¢) Which of the circular friezes in (b) has the
symmetry group C,? Which has the symmetry
group D, ? (Actually, this group is called D, C,
for technical reasons.) Which has the symmetry
group D) ?

d) One of the remaining circular frieze has a
horizontal mirror reflection. Its group is C,,. Find
it.

e) The remaining circular friezes have rotatory
reflections of angles half as large as the rotations
about the vertical axes. Find the one whose
rotations are all around a vertical axis; this
circular frieze has group C,,C,.. Describe the
additional rotations of the other, whose group is
D;IID;I'

f) Make a table to match the frieze and circular
frieze groups.

g) Classify the group of an antiprism. (See Prob-
lem 2 of Section 5.4.)

h) Place a mirror face up on a table. Place two
mirrors perpendicular to the first mirror, facing
each other at various angles. Which of the
circular frieze patterns can you make by placing
symmetric and asymmetric designs in the region
between the mirrors?

Investigate the symmetry of knots and braids.

Investigate symmetry in fugues and 12-tone music.
(See Senechal and Fleck [18].)

Investigate color symmetry. (See Loeb [11].)

Borrow a set of hand bells to investigate symmetry
and change ringing. (See Senechal and Fleck [18,
47].)

Investigate symmetry in crystals. (See Senechal
(171.)

Build a Penrose tile by using the two types of tiles
shown in Fig. 5.53. Match sides with dots on them to
ensure that the tiling will be nonperiodic. Investigate
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Penrose tiles. (See Gardner [7], Griinbaum and
Shephard [8], and Peterson [13].)

@ 36° 72°

Figure 5.53  Two rhombi that can make a Penrose
tiling. Match sides with dots and match sides without
dots.

. Investigate quasicrystals. (See Jaric [10], Peterson
[13], and Senechal [17].)

. Design fractals and investigate the Mandelbrot set
and Julia sets. (See “The Desktop Fractal Design
System” [4] under Suggested Media.)

. Estimate the fractal dimension of real shapes.
Determine the scale at which the fractal nature of
your examples breaks down. The fractal dimension
of a surface can be estimated by adding 1 to the
fractal dimension of a typical cross section. (See
Mandelbrot [12].)

. Investigate the role of symmetry in quantum mechan-
ics. (Bunch [1] and Rosen [15] provide elementary
expositions and bibliographies.)

. Investigate other ideas in symmetry. (See Bunch [1],
Hargittai [9], Rosen [15], and Senechal and Fleck
[18].)

. Write an essay considering the relationship of
symmetry and culture. Is a classification of designs
by their symmetries culturally objective?

. Write an essay discussing the application of abstract
mathematics to the world around you. For example,
why do proofs about infinite, perfect mathematical
crystals tell you anything about real, finite crystals?

. Write an essay discussing the notion of mathematics
as an experimental science. Consider the following
questions. Are proofs essential to mathematics? In
what ways is experimental evidence appropriate in
mathematics?
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