5.5 SYMMETRY IN SCIENCE

5.5.1 Chemical structure

Chemists bgneﬁt' greatly .from a geometric understanding of the arrangement of the
atoms (and ions) in chemical compounds. (For simplicity we refer to the parts of com-

pounds as atoms, ignoring the distinction between atoms and ions. Similarly, we avoid
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discussion of electrons, orbitals, and quantum mechanics, even though symmetry plays
a vital role at that level.) Chemists represent the atoms in a compound by vertices and
the bonds between atoms by edges. For example, boron trifluoride (BF3) has three flu-
orine atoms bonded to a boron atom (Fig. 5.33). Atoms bonded to a particular atom
tend to arrange themselves as far from one another as possible, while staying the ap-
propriate distance from that atom. The arrangement shown in Fig. 5.33 is as symmetric
as possible: The six (two-dimensional) symmetries form the group D3. Thus symmetry
frequently allows analysis of chemical structure. )

Carbon usually bonds with four atoms. The simplest carbon compound, the gas
methane (CHy), has just one carbon atom and four hydrogen atoms. You might first
imagine that the hydrogens would arrange themselves as some chemistry textbooks
display this compound for simplicity (as in Fig. 5.34, which has the symmetry group
D). Although this arrangement has considerable symmetry, chemistry involves three
dimensions. Figure 5.35 represents the actual placement of the hydrogens as the vertices
of aregular tetrahedron with the carbon at the center, which was deduced in 1874. Hence
the hydrogen atoms are farther apart than depicted in Fig. 5.34. Indeed, the angle of
two bonds, as shown in Fig. 5.35, is approximately 109.5°, rather than 90°, shown in
Fig. 5.34. Furthermore, the tetrahedral group T has 24 symmetries, or more than the
8 two-dimensional symmetries of Fig. 5.34. (As a three-dimensional shape, Fig. 5.34
has 16 symmetries, or still fewer than shown in Fig. 5.35.) An increase in symmetry
corresponds to a lower, more stable energy state.

One form of pure carbon, a diamond crystal, extends the symmetry of Fig. 5.35. In
a perfect diamond, each carbon atom is bonded to four other carbon atoms that form a
regular tetrahedron (Fig. 5.36). To analyze a crystal, we assume that it continues in all
three dimensions forever, which is a reasonable simplification. For example, a one-carat
diamond has approximately 10>2 carbon atoms, which means millions of repetitions of
the pattern shown in Fig. 5.36 along any axis. The symmetries of the crystal include
translations in three dimensions and the local isometries of the tetrahedral group. The
variety of the directions of the bonds and their uniformity makes diamond the hardest
naturally occurring substance. The angles of the bonds also determine the possible
angles at which gem diamonds can be cut. For example, you will never see a diamond
cut as a cube.

Carbon forms another crystal, graphite, whose very different physical and chemical
properties reflect the different geometry of the crystal. The atoms of graphite form
layers one atom thick with only weak bonds between layers. In each layer the carbon
atoms form a pattern of hexagons (Fig. 5.37). These layers slide easily over one another,
making graphite an excellent lubricant. The “lead” in pencils also contains graphite.

Classify the wallpaper pattern of a layer of graphite.

Salt (NaCl) exhibits a third crystalline structure (Fig. 5.38). The cubic arrangement
at the atomic level ensures that salt grains always have rectangular faces. Potassium
chloride (KCI) has the same crystalline form as salt and is extremely close chemically
to salt. Indeed, KCl is a salt substitute for those restricting their intake of sodium (Na).
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Figure 5.36  The crystal structure of diamond.

The presence of two different kinds of atoms in either salt or potassium chloride
affects the group of symmetries. For example, a translation of one bond’s length along
the x-, y-, or z-axis switches the sodium and chlorine atoms. This switch corresponds
to the color symmetries discussed in Section 5.3. The crystal sphalerite, made of zinc
and sulfur, is a two-color version of the diamond crystal, with each zinc atom bonded to
four sulfur atoms and conversely. (See Senechal [17] for more on crystals.)

Exercise 2 Describe a rotation of the salt crystal that switches sodium and chlorine atoms. [Hint:

the axis isn’t one of the lines for the bonds.)

o (0] o
/O/' /?I; /@/
P o) I o
./9' :9—7- :;7@
G/ ' i./l i o/
o-|—|-0-|—I— @
_o—|—ei—|-07
o o) ®

Figure 5.37  The crystal structure of graphite.
Each layer consists of a pattern of regular hexagons.

Figure 538  The crystal structure of salt.
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MARJORIE SENECHAL

Marjorie Senechal (1939~ ) is a leading researcher in mathematical crystallography and
a professor at Smith College, a distinguished college for women. Although she was
fascinated with patterns from a young age, not until much later did she realize that
“mathematics is the science of patterns.” She believes visual thinking to be vital for all
mathematics and particularly crystallography.

After completing her Ph.D. in number theory in 1965, Senechal shifted her focus
on patterns to mathematical crystallography and, more generally, to discrete geometry.
She has taught and conducted research at Smith College since 1966, interspersed with
extended research stays in seven countries. Senechal has published six books (with several
in preparation) and dozens of articles, and has contributed chapters in more than a
dozen books. In addition, she has organized numerous conferences, given many featured
addresses, and served several professional organizations as a committee or board member,
and has made many other less visible contributions to modern mathematical research.

Senechal eagerly responded to the discovery of quasicrystals in 1984 and the
ensuing heightened activity in mathematics, chemistry, and physics. In addition to
traditional research in this area, Senechal has worked with the advanced computing
facilities at the Geometry Center of the University of Minnesota. Powerful computers are
beginning to provide needed visual and analytic insight into the mathematical structure
of quasicrystals, which lack the well-understood repetitions of crystals.

5.5.2 Quasicrystals

In Section 5.3 we proved Theorem 5.3.3, the crystallographic restriction, describ-
ing the angles of rotation compatible with translations in two or more dimensions.
This mathematical result matched chemists’ experimental data on x-ray diffraction
patterns perfectly until 1984. That year a team of chemists found a compound that
gave sharp diffraction patterns with the angle of 72°, which was inconsistent with
Theorem 5.3.3. Sharp patterns had previously only been seen with crystals, so these
new compounds were called quasicrystals. Mathematicians, chemists, and others have
explored the rapidly growing field of quasicrystals. Chemists found that, as the crystal-
lographic restriction assures us, the arrangement of atoms in these quasicrystals is not
periodic.

Ten years before quasicrystals were discovered, Roger Penrose devised patterns,

which he showed could cover the plane but had no
translational symmetry. (See Project 15.) By the early 1980s, Penrose and others had
generalized these tilings to three dimensions. Some of these three-dimensional tilings
corresponded mathematically to the diffraction patterns of quasicrystals, providing one
approach to the mathematical analysis of quasicrystals.

Another mathematical insight of the 1970s brought symmetry into the study of qua-
sicrystals. Mathematicians showed that a six-dimensional “hypercrystal” could be sliced
into a three-dimensional cross section that would look like a quasicrystal. The sym-
metries (including translations) of the six-dimensional model and the angle of the cut
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determine the properties of the three-dimensional cross section. We still don’t know the
chemical relevance of six mathematical dimensions, but researchers Bak and Goldman
“emphasize that thinking of [a quasicrystal] as a periodic structure in six dimensions is
not merely an amusing mathematical abstraction.” (Jaric [10, 146]) (See Peterson [13,
200-212] and Senechal [17] for more information on quasicrystals.)

5.5.3 Symmetry and relativity

Albert Einstein’s theory of relativity transformed physics. In geometric language, the
special theory corresponds to a four-dimensional group of 'symmetries that preserve
physical properties. Although physicists had already used time as a fourth dimension,
Einstein (1879-1955) realized that space and time interacted. The simpler concept
of Galilean relativity is helpful both to illustrate the role of symmetry and to clarify
Einstein’s contribution.

Galileo Galilei (1564-1642) explained why we don’t feel the motion of the earth
as it travels through space. The motion of everything on the earth includes the speed
of the earth, so our measurements (and senses) detect only the relative differences in
the speeds of objects, not their absolute speeds. That is, the laws of physics remain the
same at different velocities. In other words, this principle of relativity holds that constant
velocities in any direction are symmetries for the laws of physics.

Sir Isaac Newton (1642-1727) and physicists following him added another princi-
ple: The measurement of time and distance is absolute. That is, clocks record the same
amount of time passing and rulers measure the same lengths, regardless of the speed and
direction they are traveling relative to one another. This absolute measurement of space
and time leads to the additivity of velocities. For example, suppose that an observer
on the ground measures a train moving 20 m/sec and an observer in the train observes
someone else in the train walking in the direction of the train at 1.5 m/sec. For the ob-
server on the ground, the walker would be moving at 21.5 m/sec. At modest speeds, the
additivity of velocities matches our experience.

Example 1

Exercise 3

Example 2
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The Mickelson-Morley experiments conducted at the end of the nineteenth cen-
tury revealed a problem with Newton’s assumption. These experiments sought to mea-
sure the influence of the motion of the earth on the velocity of light. Relative to the
sun the earth is moving approximately 18 mi/sec, a tiny part of light’s velocity of ap-
proximately 186,000 mi/sec. However, Mickelson and Morley devised an experiment
accurate enough to detect the small difference between 186,000 and 186,018 mi/sec.
Regardless of the direction the light was sent, they found its velocity always to be the
same, contradicting the additivity of velocities. Later experiments have confirmed that
the speed of light in a vacuum is constant. In 1906, Einstein showed how to combine
the constancy of the speed of light and Galileo’s principle of relativity by dropping the
absolute measurement of space and time and so the additivity of velocities. Surprisingly,
Eq. (5.1), the formula for combining velocities, corresponds to composing hyperbolic
translations, which we discuss in Section 6.5. For ease, we write velocities as fractions
of the speed of light, so 1 is the speed of light. For the simple case of velocities along a
line, we replace the addition of velocities, x + y, with

¢ +y
roy=—-12 (5.1)
1 +xy

Suppose that observer A is moving at a velocity of 0.4 with respect to observer B and
that an object is moving in the same direction at a velocity of 0.5 with respect to A.
Then the object is moving at a velocity of 0.4 @ 0.5 = 0.75 with respect to observer
B, or less than 0.4 + 0.5 = 0.9. The velocities of a spacecraft and the earth are much
smaller, or approximately 0.00003 and 0.0001. For these velocities, 0.00003 ¢ 0.0001 =
0.0001299999996, which for all practical purposes is 0.00003 + 0.0001, or 0.00013.
Thus NASA doesn’t need to use relativity theory to plan space missions. @

Verify that two observers find the same speed of light (y = I in Eq. 5.1) regardless of
their relative velocities, x.

Suppose that two people A and B each find the coordinates of two points C and D by
using different axes, as illustrated in Fig. 5.40. The Pythagorean theorem in Euclidean
geometry guarantees that they will obtain Axi + A yi = AX}% + A yé for the square of
the distance between two points. @

In the theory of relativity the measurements of elapsed time and distance by dif-
ferent observers are related much as distances are in Example 2. Suppose that two
observers each record two events taking place using suitable units. Observer A finds
the difference in time between the events to be Ara and the differences in the x-, y-, and
z-directions to be Axa, Aya and Aza. Similarly, Atg, Axp, Ays, and Azp are observer
B’s measurements. The theory of relativity guarantees that

Ax2 + AY2 + AZ2 — A2 = AxE + Ay + Az — AR, (5.2)
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Figure 5.40

Hermann Minkowski developed-a four-dimensional geometry by using Eq. 5.2 as a
“distance” formula. The Lorentz transformations preserve Eq. 5.2 and so are the symme-
tries for the special theory of relativity. (In Section 6.6 we discuss these transformations.
See Taylor and Wheeler [19] for more on the theory of relativity.)

Example 3  Suppose that person A flashes a light twice, 1 s apart according to A’s measurement. '

If person B is traveling in the x-direction at some velocity with respect to A and
observes these light flashes, Axg and Arg will differ from Axp =0 and Aza = 1, but
Axf3 - At% = Axﬁ - Ati =0— 1= —1. The faster B is traveling with respect to A,
the larger both Axg and Arg will be. Note that if B flashes the light twice, the situation
is reversed. Thus, although A and B think that their clocks are running at different rates,
it doesn’t make sense to say whose clock “actually” is slower. Similarly, we can’t say
that one has a shorter unit of x-distances. than the other. e

The use of symmetry in quantum mechanics, although important, goes beyond the
level of this text. See Project 19.

PROBLEMS FOR SECTION 5.5

Two possible arrangements of the atoms for a molecule
are chemically equivalent provided that a direct isometry

exists that converts one arrangement to the other. If no H 4
such direct isometry exists, the possible arrangements are /
isomers. & = &

1. a) Describe the two-dimensional symmetries of the i
ethene molecule (C;Hy), which has a double ) / \
bond between the carbon atoms. Find the group H H
of symmetries of CoHy (Fig. 5.41). Note that all

six atoms lie in a plane. Figure 541 Ethene.

b) Dichloroethene (CoH,Cly) replaces two of the
hydrogen atoms of ethene with chlorine atoms.
Draw the three isomers of this molecule and
describe the symmetries of each isomer. Verify
that the three groups of symmetries of these
isomers are subgroups of the symmetries of
ethene.

. The six carbon atoms of benzene (C¢Hg) form a

ring (Fig. 5.42). These atoms exhibit resonance, the
nonlocalized sharing of electrons, illustrated as a
circle. Thus just three atoms are directly attached to
each carbon. Assume that the 12 atoms of benzene
are in a plane. (Actually, the molecule is three-
dimensional.)

H\ - /H
H— C/ \C —H
\C — C/

Figure 542 Benzene.

a) Describe the two-dimensional symmetries of the
model shown in Fig. 5.42. Find the group of
symmetries of the model.

b) Repeat Problem 1(b) for dichlorobenzene
(CeH4Cla) which replaces two of the hydrogen
atoms with chlorine atoms.

¢) Repeat Problem 1(b) for trichlorobenzene
(CgH3Cl3) which replaces three of the hydro-
gen atoms with chlorine atoms. Consider “color”
symmetries that switch the hydrogen and chlorine
atoms, as well as those that don’t.

. Draw isomers for a molecule with a central carbon

atom and four different atoms (W, X, Y, and Z)
attached to it. How are these isomers different
geometrically? Chemically, these molecules polarize
light differently.

. Find the symmetry group of buckminsterfullerene,

Cgo, a recently found third form of pure carbon (Fig.
5.43).
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Figure 5.43  Buckminsterfullerene.

. Each layer of carbonates (CO3) in a crystal of calcite

(CaCOs3) looks like the structure depicted in Fig.
5.44. Analyze the wallpaper pattern of this layer.
(The calcium atoms lie in different layers not shown.
Marble is one form of calcite.)
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Figure 5.44 The structure of a layer of carbonates in
a crystal of calcite.

. Use the operation given in Eq. 5.1. Explain your

answers.

a) Two streams of protons are approaching each
other head-on in a cyclotron, each with a velocity
of 0.9 of the speed of light relative to an observer.
How fast is one stream moving relative to the
other stream?

b) Suppose that you observe a particle moving at
a velocity of 0.7 relative to you, followed by
a second particle moving in the same direction
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with a velocity of 0.8 relative to you. How fast is
the second particle moving relative to the first?

¢) Suppose that a first space ship is moving at a
velocity of 0.5 relative to you and can launch a
second space ship in the same direction moving
at a velocity of 0.5 relative to it. In turn, the
second space ship can launch a third space ship
at a velocity of 0.5 relative to it, the third can
do the same, and so on. How many space ships
must there be for the fastest one to be moving at a
velocity greater than 0.9 relative to you? Repeat
for 0.99 and 0.999.

Show that the numbers strictly between —1 and 1
form a group with the operation @ given in Eq. 5.1
as follows.

a) What velocity is the identity for @? Prove your
choice correct.

b) Find the inverse velocity of x. Prove your choice
correct.

¢) Prove that 6p is associative. Thatis,a ® (b D c) =
(a @ b) & c. (This operation isn’t necessarily a
geometric transformation, so you need to verify
this property of groups, which automatically
holds for composition of functions.)

d) (Calculus) Prove closure. [Hint: Let a be any
constant between —1 and 1. Verify that the
derivative of f(x) = (x + a)/(1 + xa) with
respect to x is always positive. Find f(1) and

F(=1.1]

8. Discuss unusual properties of Eq. 5.2 as a distance
formula.
9. a) On a graph with axes Ax and At, draw and

describe the curve of points (Ax, At) such

5.6 FRACTALS

that Ax? — Ar? = —1. This curve represents
the possible measurements that person B could
obtain in Example 3. Events with a negative
difference are called timelike because every
observer can determine which event occurred
first.

b) Repeat part (a) for Ax2 — Ar2 = 1. This differ-
ence could occur if person A flashed two different
lights at the same time and at a distance of 1 apart
in A’s measurement. Events with a positive differ-
ence are called spacelike. Describe how person B
could observe either light flash first.

¢) Repeat part (a) for Ax2 — Ar? = 0. Describe how
person A could send two different light flashes
to give this difference. Describe how person B
could observe these two events as happening at
the same time. Events with a difference of zero
are called lightlike.

Symmetries for relativity must take the curves where
Ax? — Ar? is constant to themselves. The value of b in
parts (e) and (f ) depends on the velocity of B with respect
to A.

d) Define cosh a = (¢? + ¢7%)/2 and sinha =
(e* — e=%)/2. Verify cosh? a — sinh®* a = 1.

e) Explain why you can write the coordinates for
the difference between two timelike events as
(r sinh a, r cosh a), for some a and r in R.
Verify that f(r sinh a, r cosh a) =
(r sinh(a + b), r cosh(a + b)) preserves
Ax? — Ar? for timelike events. Describe what f
does to points on the curve of part (a).

f) Modify and repeat part (e) for spacelike events.

Historically, geometry has focused on relatively simple, ideal shapes: circles, triangles,
polyhedra, and the like. However, even a cursory glance at nature reveals a vast array
of shapes unrelated to these traditional objects. Benoit Mandelbrot, the originator of
fractals, found geometric structure underlying complicated natural shapes. In 1975 he
coined the word fractal to describe the convoluted curves and surfaces that can be used
to model natural shapes that had previously seemed beyond mathematical study.
Mathematicians initiated the abstract study of curves related to fractals before 1900.
In 1904 Helge von Koch defined the Koch curve (Fig. 5.45) as the limit of an infinite
process, illustrated in Fig. 5.46. Starting with the motif at the top of Fig. 5.46, we replace




