5.3 SYMMETRY IN THE PLANE

Although real designs cannot contain infinitely many copies of a motif, many designs
from various cultures convey that impression. To analyze these patterns we assume
that the motif does repeat infinitely often, with translations either in just one direction
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Figure 5.15  An Indian frieze pattern.

(Fig. 5.15) or in more than one direction (Fig. 5.16). The classification of the finitely
many symmetry groups for frieze and wallpaper patterns provides anthropologists

and archaeologists a way to analyze designs of other cultures that transcends cultural
boundaries.

Repetitions of a bounded motif are discrete iff there is a minimum positive distance
between translations of the motif. A frieze pattern is a discrete plane pattern that has
translations in just one direction as symmetries. A wallpaper pattern is a discrete plane
pattern that has translations in more than one direction as symmetries.

To classify frieze patterns we first find which isometries can be symmetries of frieze
patterns and then determine how they combine to form groups of symmetries. WLOG
we assume that the translations are always horizontal. By Problem 4 frieze patterns

Figure 5.16 A Bornean wallpaper pattern.
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always have a horizontal line that must be stable under every symmetry of the frieze.
This line, which we call the midline, provides one way to limit the possible isometries
for frieze patterns. The frieze pattern shown in Fig. 5.15 has all the symmetries described
in Theorem 5.3.1, showing that all of them are possible.

The only symmetries of a frieze pattern with horizontal translations are horizontal
translations, vertical mirror reflections, glide reflections, and mirror reflections over the
midline of the frieze pattern, and rotations of 180° with centers on the midline of the
frieze pattern.

Draw figures to illustrate the proof of Theorem 5.3.1.

Proof.  Show that all other isometries map the midline to a different line and so cannot
be symmetries of the frieze pattern. Translations in a direction other than horizontal
lift or lower the midline, so they are eliminated. Rotations other than 180° (or 0°, the
identity) tilt the midline. Rotations of 180° whose centers are not on the midline shift it
to a different horizontal line. Mirror and glide reflections over lines that are not vertical
or horizontal also tilt the midline. Mirror and glide reflections over horizontal lines other
than the midline, as well as glide reflections over vertical lines, shift the midline to a
different horizontal line. By Theorem 4.2.7, we have eliminated all other isometries.

The analysis of how these possible symmetries fit to form groups requires a deeper
understanding of groups than needed in Section 5.2 because now the groups are infinite.
(We often simply say group instead of symmetry group or transformation group.) We
need to find a small number of symmetries for each frieze pattern from which we can
generate all the others.

A subgroup H of a group G is a subset of G that is a group in its own right, using the
same operation as G. The elements gy, g2, . . . , g, of G generate a subgroup H iff these
elements are in H and every element 4 of H can be written in terms of these elements
and their inverses, in some order and with any finite number of repetitions. We write
(g1, g2, - - . » &n) to indicate the subgroup generated by these elements.

Show that the dihedral group D, is generated by two neighboring mirror reflections, (|
and pwo.

Solution. The composition of w; and p, gives the smallest rotation: | o uy = p.
Repetitions of this composition, for example, | o py o py o up = p2, give other ro-
tations. (See Fig. 5.8.) We generate the mirror reflections as compositions of the form
p1op = o (@ omy), for some poweri. @

Explain why one translation generates the group of symmetries T of the frieze pattern
shown in Fig. 5.17.

A translation, a vertical mirror reflection, and the horizontal mirror reflection generate
the group of symmetries of the frieze pattern shown in Fig. 5.15.
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Figure 5.17 A Mexican frieze pattern.

Solution.  We use properties from Chapter 4 to analyze compositions. The smallest
translation generates all the others. The compositions of a vertical mirror reflection with
the translations give all the vertical mirror reflections. Similarly, the horizontal mirror
reflection and the translations generate the glide reflections. The composition of the
vertical and horizontal mirror reflections is a rotation of 180°. The other rotations are
obtained by composing that rotation with the translations. e

Theorem 5.3.1 reveals that the symmetry group for the frieze shown in Fig. 5.15 is
in some sense the largest such group. The group in Exercise 2 must in the same sense be
the smallest, because every frieze pattern must have translations and this frieze pattern
has only translations. To be completely rigorous, we need to be more careful. Let 7" be
the translations that shift each motif an even number of positions in Fig. 5.17. Then T’
is a group of symmetries even smaller than group T in Exercise 2. However, T’ doesn’t
differ in any substantial way from T'. In algebraic terms, the groups are isomorphic. (See
Section 1.4.) The geometric difference is that the distance between repetitions using T’
is twice the distance between repetitions using 7', which is irrelevant for finding different
types of frieze patterns. WLOG we assume that any two friezes have the same smallest
translation to the right. Theorem 5.3.2 shows that there are just seven types of frieze
patterns.

Figure 5.18 shows the seven types of frieze patterns, each having a group of symmetries
different from the others.

Beside each
pattern is the name of the group ot symmetries for that pattern. The names of the groups
pxyz tell us what symmetries they have. If x = m, there are vertical mirror reflections.
If y = m, there is a horizontal mirror reflection, and, if y = g there are horizontal glide
reflections but not a horizontal mirror reflection. If z = 2, there are rotations of 180°. A 1
in any of these positions indicates that the group doesn’t have this type of symmetry. @

There are exactly seven groups of symmetries for frieze patterns, up to isomorphism.

Proof. Example 3 shows that there are at least seven frieze groups. To show there are
no others, we consider the possible sets of generators for frieze groups chosen from the
isometries described in Theorem 5.3.1. We use 7 for the smallest translation to the right,
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Figure 5.18

p for a rotation, n for the horizontal mirror reflection, v for a vertical mirror refiection,
and y for a glide reflection.

By Problem 6, we do not need to consider every possible such set because of
the following observations. All possible rotations are generated by any one rotation
and 7. All possible vertical mirror reflections are generated by any one vertical mirror
reflection and 7. The horizontal mirror reflection (or a glide reflection) and t generate
all the glide reflections. Finally, the composition of a vertical mirror reflection and a
rotation can give two different types of symmetry. If the center of rotation is on the
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line of reflection, the composition is the horizontal mirror reflection. Otherwise the
composition is a glide reflection.

Thus we need to consider generators of the form (r, ?), where ? is replaced by
some of the following general symmetries: p, p’, v, n, or y, where we assume the
center of p to be on the line of reflection of v but the center of o’ not to be. (If v is
not one of the generators, it does not matter whether we use p or p'.) Then (t) = plil,
(z, p) =p112, (r,v) =pmll, (7, n) = plml, and (r, y) = plgl. We obtain pmg2 from
(z. 0" v), (v, 0, ¥) (r.v, ), or (7, 0, v, ¥). We obtain plm1 from {r.m.¥)or (z,n).In
Problem 6 you are asked to show that all other sets of generators yield pmm2. m

The classification of wallpaper patterns is more complicated than that of the
frieze patterns. Figure 5.19 shows that different rotations are possible. However, Theo-
rem 5.3.3 reveals that the angles of rotation illustrated in Fig. 5.19 are the only possible
angles. This result is called the crystallographic restriction because it is also crucial in
the classification of three-dimensional crystals.

The Crystallographic Restriction The minimal positive angles of rotations that can
be symmetries of a wallpaper pattern are 60°, 90°, 120°, and 180°, and 360°. All other
angles of rotations for a given wallpaper pattern are multiples of the minimum angle.

Proof.  Let A be a center of rotation for a wallpaper pattern and let B be a point closest
to A for which some symmetry takes A to B. Then B must, by symmetry, also be a
center of rotation for the wallpaper pattern with the same angles as at A. No two other
images of A can be any closer together than are A and B. WLOG assume that A is
to the left of B. Let p be the smallest positive rotation with center at A and ¢ be the
smallest negative rotation with center at B. Now consider A’ = ¢(A) and B’ = p(B)
(Fig. 5.20). By symmetry, both A’ and B’ must be centers of rotation like A. If p rotates
less than 60°, then d(A’, B’) will be less than d(A, B), which is impossible. Similar
reasoning (see Problem 7) eliminates other minimum angles except 90°, 120°, 180°, or
360°. Hence only the specified angles are compatible with wallpaper patterns. =

There are exactly seventeen groups of symmetries for wallpaper patterns, up to
isomorphism.

Proof. See Crowe [2]. m

The Russian chemist and mathematician Vyatseglav Fedorov in 1891 first stated
and proved Theorem 5.3.4, but his proof wasn’t widely noted. Several other mathe-
maticians, including Felix Klein, independently found and proved this classification.
The proof of Theorem 5.3.4 is based on group theory, but it isn’t difficult to suspect
geometrically that mirror and glide reflections can fit particular angles of rotation in
only finitely many ways. Thus the number of wallpaper patterns is finite, even if the
number 17 remains somewhat mysterious. The flowchart presented in Fig. 5.21 com-

presses the mathematics of the proof into a methodical way of classifying wallpaper
patterns. The geometer Don Crowe developed such flow charts to aid archaeologists and
anthropologists.

5.3 Symmetry in the Plane 195

A Mexican design A Spanish design

|

A Moroccan design

A Mongolian design :

G

An Iraqi design

Figure 5.19  Wallpaper patterns.

The names of the wallpaper groups in Fig. 5.21 aren’t as simple as the names of the
frieze groups. The numbers 2, 3, 4, and 6 refer to the maximum number of rotations
around a center of rotation, as do the groups C, and D,. The letters m and g refer
to mirror and glide reflections. The letter ¢ stands for a thombic lattice, instead of a
rectangular lattice. The difference is explained in Example 4. Then Example 5 considers
two groups that are often as difficult to distinguish as are their names, p31m and p3m1.
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Example4 Classify the patterns shown in Fig. 5.22.
Solution.  Neither pattern has any rotations, so we follow the none branch in Fig.5.21.
Both have reflections, so we need to look at the glide reflections. In the Zairean design,
the motifs stack like boxes, so the glide reflections line up with the mirror reflections.
In the Chinese design the motifs alternate, like bricks in a wall, enabling new glide
réflection axes. The Zairean has the group pm, while the Chinese has cm.
Example 5 Classify the patterns shown in Fig. 5.23.
Solution.  Both designs have rotations of 120° but not 60°. Each has some mirror re-
flections that pass through centers of rotation. Indeed, Fig. 5.23(a) has mirror reflections
Do copies by }Yes——cm
translation
— 360°_JAre there F—VYes ——__lfit like bricks?+No —pm
mirrors? [~—No re there }—Yes —pg
glides? No ——pl
Do copies by }Yes——cmm
translation
Are there Yes —|fit like bricks?+No ~.pmm
perpendicular
mirrors? No pmg
|__180°__[Are there |—VYes
mirrors? f~—No.——_________ [Arethere Yes — pgg
glides? NO ——p2
What is the
smallest
rotation? | _120°_[Are there Yes ————Are all centers on Yes —p3m1
! mirrors? |[—No reflection axes? No — p31m
L 3
p
| 90%_JAre there —Yes Are there Yes — p4m
mirrors? {+—No mirrors at 45°?] ——No ——pég
p4
__.60°__JAre there |—VYes pém
mirrors? [~——No p6

Figure 521  Flow chart for the 17 wallpaper groups.
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Figure 5.22

through every center of rotation. Hence its group is p3m1l. However, the centers of the
triangles in Fig. 5.23(b) don’t have mirror reflections, so it has group p31m. e

The anthropologist Dorothy Washburn teamed with the geometer Don Crowe to
pioneer the use of symmetry groups in cross-cultural studies. Before their work, re-
searchers had tried to analyze the varying motifs of different cultures. Although some
characteristics seem apparent, the great variety of motifs made an analysis of motifs
culturally subjective. However, the symmetry groups are independent of culture. For
many cultures, the types of frieze and wallpaper designs used by their artists remain the
same over long periods of time. This stability provides people studying cultures another
marker in the study of societies and their interactions. A new design can indicate the
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Figure 5.23  Two Japanese designs.

(b)
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influence of trade with another region. Cultures that emphasize weaving tend to utilize
designs from other media, such as ceramics, which have the symmetry patterns that can
be obtained with weaves. For an ancient culture for which no traces of weaving may re-
main, patterns on ceramics, which can endure millennia, can provide indirect evidence
about weaving. (See the Spanish and Mongolian patterns in Fig. 5.19.)

Many cultures create patterns with two-color symmetry or multiple-color symme-
try. Color symmetry involves two groups: the color-preserving group and the color
group, a larger group that includes the color-switching symmetries. We can analyze each

Just as we do any other symmetry group. (Again, stippling and cross-hatching are used,
as necessary, to represent additional colors.)

Classify the colored patterns shown in Fig. 5.24.

Solution.  First consider the color-preserving symmetries shown in Fig. 5.24(a), a
Peruvian design. All the black “staircases” are upright, implying no color-preserving
rotations. The rows of black staircases alternate facing left and right, indicating no
mirror reflections but indicating glide reflections preserve colors. From Fig. 5.21, the
color-preserving group is pg. All the white staircases are upside down, so 180° rotations
can switch colors. Horizontal mirror reflections between rows switch colors, but no
vertical mirrors work. Figure 5.21 then tells us the color group is pmg. We write the
pair of groups with the color group on top: pmg/pg.

The pattern shown in Fig. 5.24(b) is a three-color frieze pattern. The central vertical
mirror reflection preserves the black parts but switches the white and stippled parts.
The only symmetries preserving all three colors are translations and glide reflections, so
the color-preserving group is plgl. The color-switching group includes vertical mirror
reflections and rotations, but not horizontal mirror reflections. Hence the color group is
pmg2, and the classification is pmg2/plgl. Note that some translations in pmg2 are
shorter than the translations that preserve colors. @

A symmetry of a design is color-preserving iff every repetition A of the motif in the
design is mapped to a copy that is the same color as A. A symmetry « of a design is

Figure 5.24

Theorem 5.3.5
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a color-switching symmetry iff, whenever the repetitions A and B of the motif are the
same color, then «(A) and «(B) are the same color. A color symmetry of a design is
either a color-preserving or a color-switching symmetry.

The color-preserving symmetries of a design form a subgroup of the color symmetries
of the pattern.

Proof. See Problem 8. =

The widespread use of frieze and wallpaper patterns throughout the world shows
the appeal of symmetry across barriers of time, language, and race. It also shows the
geometric understanding needed to join motifs to make these patterns. However, there is
no evidence that any individual or society explicitly considered finding all types of these
patterns until the late nineteenth century. It is no accident that Fedorov and the others
who thought about classification were trained in formal mathematics, especially group
theory. Mathematics provides new ways to see the world, enriching understanding.

PROBLEMS FOR SECTION 5.3

1. Classify the frieze patterns shown in Fig. 5.25.

SIS xnxzsz

(a) Moroccan

(d) French

RoAATIA QQQQOQ

(b) Indonesian

(e) Bornean

FEFCUFC 00 oo ™

(c) Peruvian (f) Chinese

Figure 5.25
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2. Classify the two-color frieze patterns shown in Fig.
5.26. These designs represent all 17 types of two-
color frieze patterns.

| I|| I -
(a)

(b)

(d)

()
Figure 5.26
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3. Classify the wallpaper patterns shown in Fig. 5.27.
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(g) Celtic

(j) Bornean

)
7
|
5

(b) Bornean » (c) Spanish
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(k) Spanish (1) Italian
Figure 5.27
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Prove that in every frieze pattern with horizontal
translations there must be at least one stable hori-
zontal line. [Hint: Suppose that no such stable line
existed; show that a translation would also be possi-
ble in some other direction.

. a) Make a flow chart to classify frieze patterns.

b) Describe which symmetry groups for frieze
patterns are subgroups of the others.

. Complete the proof of Theorem 5.3.2.
. Complete the proof of Theorem 5.3.3.
. a) To prove Theorem 5.3.5, prove that both sets of

symmetries form groups.

b) (Group theory) Prove that the color-preserving
group is a normal subgroup of the color group.

. Find as many types of wallpaper patterns as you can

with a motif of a rectangle twice as long as it is wide.
The rectangles need not all line up the same way,
although they shouldn’t overlap or have gaps. Which
symmetry groups can’t be realized with this motif?
Explain.

=

(a) Moroccan

T

-

&

(d) Iranian

>

(b) Brazilian

10. a) Find all regular wallpaper patterns. To be regular,

11.

12.

(e) Japanese

b)

L.

the motif must be a regular polygon, there can be
no gaps between or overlaps of the polygons, and
two polygons with more than a point in common
must share an entire edge.

Find all eight semiregular wallpaper patterns. A
semiregular pattern differs from a regular pattern
in that the motif must be two or more regular
polygons and all vertices must have the same
pattern of polygons around them. [Hint: The sum
of the angles at each vertex must add to 360°.
There are at least three polygons at each vertex.|
(Johannes Kepler (1571-1630) was the first to
find these patterns.)

Draw the design for a plain weave, where each
horizontal thread alternately goes over and under
the vertical threads. Classify the symmetry group
of this design. Classify the Spanish design shown
in Fig. 5.19 and verify that all its symmetries are
symmetries of a plain weave.

Classify the two-color wallpaper patterns of Fig.
5.28.

3838

(c) Egyptian

W

AVAVA

(f) Zairean
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[

Figure 5.28




