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5.2 FINITE PLANE SYMMETRY GROUPS

Snowflakes possess the same number of symmetries, even if no two are exactly alike.
Figure 5.8 illustrates the six rotations and six mirror reflections that form the group of
symmetries of a snowflake. The swastika (Fig. 5.9), a religious symbol in ancient India
long before the Nazis appropriated it, has four symmetries, all rotations of multiples
of 90°. In this section we classify the finite groups of plane symmetries. Leonardo da
Vinci (1452-1519) realized that, in modern terms, all designs in the plane with finitely
many symmetries have either rotations and mirror reflections like those in Fig. 5.8 or just
rotations like those in Fig. 5.9. The two types of symmetry groups in the classification
presented in Theorem 5.2.2 are called dihedral and cyclic. Dihedral means “two faces”
and refers to the fact that the symmetries in this group can be found by using two mirrors
at an angle. (See Project 1 of Chapter 4.) The argument in Theorem 5.2.2 shows how
algebraic reasoning can be used to turn geometric intuition into proof.

Definition 5.2.1 The cyclic group C, contains n rotations, all with the same center. The angles of
rotation are the multiples of 360°/n, where n is any positive integer. The dihedral group
D, contains the n rotations of C, and n mirror reflections over lines passing through
the center of the rotations. The angles between the lines of the mirror reflections are
multiples of 180°/n. (See Fig. 5.8.)

Exercise 1 ~ What are the symmetry groups for Figs. 5.8 and 5.97
Exercise 2  Find the symmetry group of a regular n-sided polygon.

Theorem 5.2.1 The isometries of a finite plane symmetry group must fix some point and so are rotations
around this fixed point or are mirror reflections over lines through this fixed point.

Figure 5.8 The symmetries of a snowflake. Figure 5.9
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Theorem 5.2.2

Example 1

Symmetry

Proof.  We adapt a proof from Gallian [6, 404]. Let G be a finite symmetry group
of plane isometries and assume that the plane has coordinates. For a point A, let § =
{y(A) : y € G}; that is, S is the set of images of A under the isometries of G. Because
G is finite, so is S, whose elements can be listed as (e Vi) (B V3 )56 o 5 (s Vi), The
center of gravity of these n points, (¥,y) = ( "'“ﬁ”*‘”, -"‘+-"3j"+-"" ), must be fixed
by every y in G. Each (x;, y;) is the image of A by at least one y; in G: (x;, y;) = Yi(A).
Now, for any y in G, y o y; is another element of G, so y will move the points of §
around among themselves. Thus their center of gravity, (x, ¥), is fixed by each y. From
Section 4.2, we know that the only plane isometries that fix a given point are rotations
around that point and mirror reflections over lines through the point. m

A finite symmetry group containing only Euclidean plane isometries is either a cyclic
group or a dihedral group.

Proof.  We need to show that the possible rotations and mirror reflections from Theo-
rem 5.2.1 always fit exactly as cyclic and dihedral groups require. First, consider the
rotations. If there is only one, it is the identity, a rotation of 0°. Otherwise, let the
smallest positive angle of rotation be A°. From Chapter 4 the composition of rota-
tions of B° and C° is a rotation of B® 4 C°. Thus by closure there are rotations by
all multiples of A°. The number of rotations is finite, so A divides some multiple of
360. Moreover, A divides 360. Let kA be the largest multiple of A less than 360. Then
360 < (k+ 1)A <360 + A. If (k 4+ 1)A° is greater than 360°, it is the same angle as
((k +1)A — 360)°. However, this last angle would be positive and smaller than A°,
which is a contradiction. Hence, A divides 360, say, A = 360/n. Thus we have at least
the n rotations whose angles are multiples of A°.

Claim.  There are no others. Suppose that there were a rotation of B°, not a multiple
of A°. Let j A be the largest multiple of A less than B. Then there would be a rotation of
(B — jA)°, which would be less than A°, which is a contradiction. Hence the rotations
form C,,.

Next consider the mirror reflections of this symmetry group. If there are none, we
have C,. If there is at least one, its compositions with the n rotations give n different
mirror reflections. Problem 6 of Section 4.2 showed that the composition of two mirror
reflections over lines meeting at an angle of C° is a rotation of 2C°. As these angles
of rotation must be multiples of A°, the angles between the lines must be multiples of
%A" = (180/n)°. Thus there are just n lines and the symmetry group is D,. =

Theorems 5.2.3 and 5.2.4 apply more generally than just to Euclidean plane geom-
etry. Theorem 5.2.3 shows how to count the number of symmetries of a design without
finding them individually. It is an application of LaGrange’s theorem in group theory,
but we prove it directly. (For those who have studied abstract algebra, the classes in
the proof are the cosets of G p, which is a subgroup of G. Furthermore, the symmetries
fixing a point are the stabilizer of the point, and the points to which that point can be
moved are its orbit.)

Count the symmetries of a pentagonal dipyramid.

Solution. The pentagonal dipyramid shown in Fig. 5.10(a) has seven vertices, but
they can’t all be mapped to one another. Figure 5.10(b) shows the polyhedron from

Theorem 5.2.3

Theorem 5.2.4
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(a) (b) (c)

Figure 5.10  Three views of a pentagonal dipyramid.

the top vertex. The symmetries fixing the top vertex form the dihedral group Ds, so
10 symmetries fix this point. The only other vertex symmetric to the top vertex is the
bottom. Hence, when we apply Theorem 5.2.3 using the top vertex, we find a total of
10 x 2 =20 symmetries. We can arrive at this same number of symmetries by using one
of the other vertices. Figure 5.10(c) shows that the symmetries fixing one of these other
vertices form the dihedral group D2, which has four elements. For five such vertices,
Theorem 5.2.3 again yields 4 x 5 =20 symmetries. @

The number of symmetries of a figure, if finite, equals the product nk, where n is the
number of symmetries of the entire figure that leave a given point fixed and k is the
number of points to which that point can be moved by symmetries.

Proof. Let P be any point of the figure, G the symmetry group, Gp be the set of
symmetries that fix P, and G, have n elements. We collect the symmetries of G into
disjoint classes, show the classes to be the same size, n, and count the number of classes,
k. Two symmetries « and 8 are in the same class iff they map P to the same point Q:
a(P) = B(P) = Q. The number of classes, k, is the number of points to which P can be
moved. To complete the proof we need to show all the classes to be the same size, n, as
G p, the class that maps P to P. Suppose that «(P) = Q and consider [«], the class of a.
Forevery y € Gp, a o y is another element of [«] because a(y (P)) =a(P) = Q. Hence
any other class has at least as many elements as G p. Conversely, for every g in [«],
a0 B isin Gp because ! (B(P)) =a~!(Q) = P. (By Problem 4, the symmetries
a oy and o~ ! o B are all distinct.) Hence the classes are all the same size, n. Thus the
number of symmetries in G isnk. m

In a finite symmetry group, either all the isometries are direct or exactly half of them
are direct.

Proof. Let D be the set of the direct isometries and I the set of the indirect isometries,
if any, in the symmetry group. If D is the entire symmetry group, we are done. If y € 1,
then yD = {y 0§ : 8 € D} is a subset of I because y switches orientation but § does not.
Furthermore, distinct § give distinct products y o § by Problem 4. Hence 1 has at least
as many elements as D. A similar argument with yI = {y o § : € I} shows that D has
at least as many elements as I. Hence they have the same number of elements. =
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Example 2 Describe the symmetries of a pentagonal dipyramid.

Solution. By Theorem 5.2.4, we know that half of the 20 symmetries are rotations
including the identity. Four rotations around the axis through the top and bottom vertice;
have angles of rotation that are multiples of 72°. (See Fig. 5.10(a).) The five remaining
rotations, each of 180°, are around axes that go through one of the remaining five
vertices on the pentagonal “equator.” There are five vertical mirror reflections and one
horizontal mirror reflection. Theorem 5.2.4 guarantees four more indirect isometries
which are rotatory reflections. (See Section 4.5.) They can be written as compositions’
of the horizontal mirror reflection with the rotations around the vertical axis. @

PROBLEMS FOR SECTION 5.2

1. a) Classify the symmetry group of each of the

: mme b) Classify the different types of quadrilaterals
designs shown in Fig. 5.11.

(parallelogram, kite, rhombus, and so on) by
their symmetry groups.

A &<

A Gothic design

An Islamic design A Gothic design

Figure 5.11

2. a) Explain why the symmetries of the rectangle
shown in Fig. 5.12(a) and the symmetries of the
triangle shown in Fig. 5.12(b) are symmetries of
the surrounding hexagons.

b) Draw an analogous design that combines two
other dihedral groups.

¢) Draw an analogous design that combines two
cyclic groups.

d) Draw an analogous design that combines a cyclic
group and a dihedral group.

symmetries—the symmetries that take each
region to another region of the same color. Do
these symmetries form a transformation group?
If so, which one? Explain.

Figure 5.13

b) Describe the symmetries of this design that
switch colors. Do these symmetries form a

transformation group? If so, which one? Explain.

¢) Call the union of the symmetries from part (a)
and part (b) the color symmetries of the design.
Do the color symmetries form a transformation

. group? If so, which one? Explain.

d) Make other two-color designs having different
symmetries. Repeat parts (a), (b), and (c) for
each of these designs.

e) Repeat parts (a), (b), and (c) for the solid black,

~—

stippled, and cross-hatched design shown in Fig.

5.14.

'//// f

Figure 5.14
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f) Make a design having at least three colors. Repeat
parts (a), (b), and (c) for this design. Be sure that
your color-switching symmetries take all regions
of one color to the regions of a second color so
that the underlying relationships of the colors are
preserved.

g) Make a conjecture based on the results obtained
in parts (a)—(f).

. Show for all symmetries «, 8, and y, if f # y, then

aoB#aoyand foaFyoa. [Hint: Use @™ ']

. If symmetry is changed to rotation throughout

Theorem 5.2.3, is the theorem still correct? If so,
prove this revised theorem. If not, explain why it is
false.

. Count the symmetries of each polyhedron named.

a) The five regular polyhedra: cube, tetrahedron,
octahedron, dodecahedron, and icosahedron.
(See Fig. 1.44.)

b) A triangular prism and a square prism.

¢) Generalize part (b) to a prism with regular n-gons
for the top and bottom and n rectangles for the
sides.

d) The tetrahedron has half as many symmetries as
the cube. Are all the symmetries of the tetrahe-
dron also symmetries of the cube? Explain.

. Alter and prove Theorem 5.2. 1 for isometries in three

dimensions.

. Theorem 5.2.3 can be modified to address faces

rather than points. For each of the polyhedra in
Problem 6, pick a face, count the symmetries taking
that face to itself and the number of faces to which
that face can go. Verify that the product of these
numbers is the same as the number of symmetries
that you found in Problem 6.

. Modify Theorem 5.2.3 and its proof to count

the symmetries of polyhedra, using faces. (See
Problem 8.)

. Relate the group of symmetries of a circle to the

dihedral groups D,,.

e) For each of the preceding designs give the two
symmetry groups. What pattern did you find
between each pair of symmetry groups? Make a
conjecture about these symmetry groups and try
to prove it.

3. This problem introduces the idea of color symmetry.
(Because this is a black and white book, we use
(a) (b)

Figure 5.12

stippling and cross-hatching to represent colors other
than black and white.)

a) For the two-color (black and white) design
shown in Fig. 5.13, describe the color-preserving

5.3 SYMMETRY IN THE PLANE

Although real designs cannot contain infinitely many copies of a motif, many designs
from various cultures convey that impression. To analyze these patterns we assume
that the motif does repeat infinitely often, with translations either in just one direction



