Symmetry

The rules of symmetry restrict how an artist can fit a repeating motif
(such as this Iranian design) together to make a design. Archaeologists
and anthropologists have started using symmetry in their study of
designs to provide greater insight into cultures. Chemists and
physicists use symmetry to organize new discoveries, to analyze
empirical evidence, and to suggest fruitful lines for future inquiries.
Knowing the fundamental concepts and mathematics of symmetry
increases understanding in many subjects.
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Figure 5.1

Symmetry, as wide or as narrow as you may define its meaning, is
one idea by which man through the ages has tried to comprehend
and create order, beauty and perfection. —Hermann Weyl

The investigation of the symmetries of a given mathematical
structure has always yielded the most powerful results.
—Emil Artin

5.1 OVERVIEW AND HISTORY

\

A Mexican design.

Repeated patterns abound in nature, and artists in virtually every culture and time have
used repeated patterns in their designs. The repetition of a motif underlies symmetry,
whether in a bilateral Mexican design (Fig. 5.1) or the intricate atomic structure of a
diamond crystal (Fig. 5.2). Symmetry combines aesthetic and practical values which
happily augment one another.

The bodies of most animals illustrate bilateral symmetry; that is, a mirror reflection
interchanges the two sides of the animal. Hunting lions as well as hunted antelopes
need the ability to turn left as readily as right and to hear from each side equally
well. However, feet are useful only underneath an animal, so there is no evolutionary
advantage to a symmetry between up and down. Similarly, running backward isn’t
important for either predator or prey, so there is no symmetry between the front and the
back of animals. Hence the practical needs of most animals require symmetry between
right and left, but no other.

Figure 5.2 A diamond crystal.

Exercise 1

Definition 5.1.1
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Some animals, such as jellyfish, have more than just bilateral symmetry. What makes
this extra symmetry advantageous for these animals?

Evolution can explain symmetry in animals, but it provides no insight into the
widespread aesthetic appreciation people have for symmetry. The unity and balance of
symmetric objects seems to appeal to people of all cultures. Hermann Weyl in his classic
book on symmetry [22, 3] writes:

Symmetric means something like well-proportioned, well-balanced,
and symmetry denotes that sort of concordance of several parts by
which they integrate into a whole. Beauty is bound up with symmetry.

Human beings have thought about symmetry in artistic terms for thousands of
years. However, a systematic and mathematical study of symmetry required a shift
from a static viewpoint to a dynamic one. Group theory and transformational geometry
provided the mathematics needed to study symmetry. In particular, the symmetries of a
figure are the transformations under which the figure is stable, and these transformations
always form a group. Thus the evolution of the concept of a group in the nineteenth
century is inseparable from symmetry in algebra and geometry.

Joseph Louis Lagrange (1736-1813) started investigating transformations (symme-
tries) of the roots of polynomials in 1770. Evariste Galois (1811-1832) pursued these
ideas and in the process developed many important theorems and concepts of group
theory. Chemistry provided another impetus for the study of symmetry and groups, es-
pecially the classification in 1849 of all possible types of chemical crystals. The French
physicist Auguste Bravais (1811-1863) developed this classification by using groups
long before x-ray crystallography in 1912 confirmed these mathematical conclusions.
Indeed, his classification predicted possible crystal types that were only later discovered
and one that hasn’t yet been found. Camille Jordan (1838-1922) united the algebraic
work of Galois and others and the geometric work of Bravais in the first book on group
theory in 1870. Klein and Lie extended the use of transformations and groups through-
out geometry.

The classification of possible symmetry groups has supplied scientists and others
with a clear understanding of the possible patterns that can be found in their areas.
Symmetric patterns, especially in physics, are often formal rather than visual. Even so,
the same geometric intuition underlies symmetry in that context. In turn, questions from
other disciplines have stretched the notion of symmetry and raised new mathematical
questions. The beauty of the mathematics of symmetry and the beauty of symmetric
objects have inspired the study of symmetry.

A transformation o is a symmetry of a subset T of a geometric space iff o(T) =T.
(Individual points in 7 can move to other points in T, but T is stable.) A motif of a
design is a basic unit from which the entire design can be obtained as the images of that
motif under the symmetries of the design.
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The possible symmetries of a figure are usually limited to the isometries of the
larger space. Problem 8 and Section 5.6 consider some other possibilities. Theo-
rem 5.1.1 shows that the symmetries of a set form a transformation group, called the
symmetry group of that set.
Theorem 5.1.1 The symmetries of a subset T form a transformation group.
Proof.  Recall from Section 4.1 that a group of transformations needs to have closure,
identity, and inverses. If « is a symmetry of T, then «(T) = T. For closure, let
and B be symmetries of T. Then « o S(T) = a(B(T))=a(T)=T. Thus a o B is
also a symmetry of T. The 1dent1t)f l f:learly takes any subset T to itself. Finally, let An Iranian design A Byzantine design An Afgani design
o be any symmetry of T and o~! its inverse, as guaranteed by Theorem 4.1.2. Then
a (T =a Y a(T) =«(T) =T, showing &~ ! also to be a symmetry of 7. m Figure 5.3
Example 1 The symmetry group of the design shown in Fig. 5.1 contains only the identity and a
mirror reflection. Either half of the design can b idered if. -
frvr o f the di d ” gl.l n S t_are _a 8 [e-maet The:sy mm§ center of the other (Fig. 5.5). Find the maximum continue forever in a line. Describe the types of
v?é isg:rlzl:thafthéag:s)ingn‘z:r(z’:tt?nusesof"z?e:ltrﬁlf.alslfli?:cstil(;lﬁsmlt:ely many lsymmemtes, if and minimum percentages of the area of second symmetries of each design.
. - : RE=HOLEXENDIE, RUATAns- square covered by the first square. Explain your o
lations will slide the entire crystal over to coincide with itself. Rotations of 120° around a?lswer. [Hint: Sy};nmetry is ?he key.] i b) El;isgylglrge(;zgfegrr%ﬁ Satfe orOtl:::r (:;:Sli [;: S:;::g
the lines re ting the bond ies. if in thi i i ’ :
& d PESSSIENE K, .o n S alsQ Qe §ymmetnes The motif in this case is one carbon b) Repeat part (a) for two regular hexagons. translational symmetry that have different sym-
atom and the bonds attaching it to its neighbors. e . . H different fth
¢) Repeat part (a) for two equilateral triangles. meiry groups. tlow many dilleent fypek of these
[Hint: This answer differs from the others.] designs can you create?
Exercise 2

Describe the symmetries of the Iranian design at the beginning of this chapter.

The variety of artistic motifs is limited only by artists’ imaginations. However,
these motifs can fit symmetrically in relatively few ways, which we will classify. In this
chapter we discuss symmetry in two and three dimensions and present applications of
symmetry in the sciences and other fields. In Section 5.6 we investigate fractals, a new
area of mathematics and science that stretches the idea of symmetry in an intriguing
direction. (Yaglom [23] provides further historical information; Weyl [22] is a classic
study of the ideas of symmetry.)

. Let T and U be subsets of a space S. Prove that

the set of transformations of S that are symmetries
for both 7 and U form a group of transfor-
mations.

. a) The designs shown in Fig. 5.6 are intended to

b)

The designs shown in Fig. 5.7 have symmetries
that are affine transformations but not isometries.
Describe the symmetries for these designs.
Create designs that have symmetries besides

isometries. Identify the symmetries in each
design.

PROBLEMS FOR SECTION 5.1

1. a) Classify the letters of the alphabet in terms of

their symmetries. Consider uppercase (capital)
and lowercase letters in any font you choose.

b) Find the longest word you can that has vertical
bilateral symmetry (a vertical mirror reflection);
repeat for horizontal bilateral symmetry. Find
some words with other symmetry.

¢) Make up a sentence that is a palindrome; that
is, it has the same order of letters backward as

forward. How does the symmetry of a palindrome
differ from vertical bilateral symmetry?

. If a figure has both horizontal and vertical mirror

reflections as symmetries, must it have any other
symmetry? Illustrate and explain.

. Describe the symmetries of each design shown in

Fig. 5.3.

. Find the next few shapes in the sequence shown in

Fig. 5.4.

. a) Make two squares of the same size. Attach one

corner of one of the squares to the center of
the second square in such a way that the first
square rotates in the plane freely around the

Mo

Figure 5.4

Figure 5.5
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A Mexican design

A Chinese design
Figure 5.6

Figure 5.7



