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d) Find the products and fixed points of AB and AC. a) Prove that an n x n matrix is orthogonal iff it
Describe how they differ. One of these products maps the standard basis vectors to an orthonormal
is again a rotation. Decide which product is a basis of R".
rotation and what its angle of rotation is. What b) Explain why orthogonal n x n matrices will be
can you say about the other product? isometries of the n-dimensional unit sphere.
9. Recall that the standard basis of R" is the set ¢) Explain why the matrices we defined to be n-
{(1,0,0,...,0),(0,1,0,...,0),...,(0,...0, D}. dimensional isometries actually are isometries.

4.6 INVERSIONS AND THE COMPLEX PLANE

Definition 4.6.1

Exercise 1

Exercise 2

Theorem 4.6.1

Affine transformations map lines to lines, but some important classes of transformations
do not do so. Inversions form one important family of such “nonlinear” transformations.
In brief, an inversion switches points on the inside of a circle with the points on the
outside of a circle (Fig. 4.33). The center of the circle has no Euclidean point for its
image, and no Euclidean point can be mapped to the center. This situation creates a
problem in terms of transformations because transformations must be one-to-one onto
functions. We solve this problem by adding a point to the plane that can switch places
with the center. Intuitively, this extra point must be “at infinity,” so we call it co. This
new point is defined to be on every line.

The inversive plane is the Euclidean plane with one additional point, denoted oo. Let a
circle C with center O and radius r be given. Tl_le_t;nversion v with respect to C maps a
Euclidean point P (P # O)to v.(P) ontheray O P, where d(O, P) -d(O, ve(P)) = i2.
We define v.(0) = 0o and v.(00) = O. The center of the inversion is O.

Illustrate the inversion with respect to the unit circle x2 + y? = 1. Verify that every line
through the origin is mapped to itself, as is the unit circle. Explain why a circle with
center (0, 0) is mapped to another circle with the same center. How are the radii of these
circles related?

Explain why any inversion is its own inverse.

Let k be any line not through the center of inversion O of v.. Then the image of k is a
circle through O. Conversely, the image of a circle through O is a line not through O.

Figure 4.33  The inversion in circle C.
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Theorem 4.6.2

Definition 4.6.2

Theorem 4.6.3

(a) (b)

Figure 4.34

Proof.  As shown in Figs. 4.34a and 4.34b, let the perpendicular from O to k intersect
k at A and let A’ = v.(A). Show that the circle D with diameter OA’ is the inversive
El_lgge of k. To do so, let P be any point on k and P’ the (second) intersection of
O P with the circle D. (Explain why there must be a second point of intersection.)
Because OA’ is a diameter, /O P'A’ is a right angle. Hence AOP'A’ ~ AOAP. By
the proportionality of the sides, there is some p such that d(O, P)=p-d(0, A)
andd(0, A’) = p-d(0, P). Thend(O, P') - d(0, P) = d(O, A)-d(0, A"y =r? and
P’ = v.(P), as claimed. Thus D is the inversive image of k. For the other direction,
note from Exercise 2 that P’ = v.(P) iff v.(P’) = P. Hence this construction shows the
inversive image of any circle D through O must be the corresponding line k. =

Exercise 1 is a special case of Theorem 4.6.2. Another special case of that theorem,
Theorem 4.6.3, is important in the Poincaré model of hyperbolic geometry. Although the
proof of Theorem 4.6.2 isn’t difficult, it does require lemmas from Euclidean geometry
that would sidetrack us.

Let D be a circle that does not pass through the center of inversion of v.. Then the
inversive image of D is another circle that does not pass through the center of inversion.

Proof. SeeEves[4,78]. =

Two circles are orthogonal iff the radii of these circles at their points of intersection are
perpendicular.

If a circle D is orthogonal to the circle of inversion C, then v.(D) = D.

Proof.  With D orthogonal to C, the radii of C that go to the intersections P and Q
of these two circles are tangents to D (F‘i_g;> 4.35). Because P and Q are on C, they are
fixed by the inversion. Lines O P and O Q are stable. By Theorem 4.6.2, v.(D) is a
circle through P and Q. Furthermore, lines OP and B_é must still be tangent to v.(D),
for each has one point of intersection with this circle. Thus the perpendiculars to these
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Q

Figure 4.35

lines through P and Q intersect in the center of the circle. However, this center is also
the center of D, which shows that v.(D)=D. m

In the Poincaré model of hyperbolic geometry, arcs of orthogonal circles are used
as lines. (See Section 3.1.) Henri Poincaré had the key insight that certain inversions
correspond to mirror reflections in the model now named for him. In Eig. 4.36, the
points inside circle H are the points of the hyperbolic plane. Circle C is ort‘hogor'nal
to H, so its arc inside H is a hyperbolic line. By Theorem 4.6.3 the inversion with
respect to C maps H to itself. Hence this inversion is a transformaﬁn in tkModel of
hyperbolic geometry. For example, it switches the hyperbolic lines PQ and P'Q'. Us'fng
the definition of distance given in Section 3.5, Poincaré showed that this transformation
is actually a mirror reflection. Euclidean mirror reflections over diameters of circle H
also are hyperbolic mirror reflections. Hyperbolic mirror reflections resemble Euclidean
mirror reflections in two ways. First, they switch the orientation of figures. Second, all
hyperbolic plane isometries can be written as compositions of three or fewer hyperbolic
mirror reflections, analogous to Theorem 4.2.5.

Figure 4.36 A hyperbolic mirror reflection for the Poincaré model.

7
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Figure 4.37

To understand hyperbolic isometries in the Poincaré model we need to consider
compositions of inversions, which generally are not inversions. Complex numbers pro-
vide a convenient way to find formulas for inversions and Mdobius transformations,
which we discuss shortly.

Inversion is a two-dimensional analog of a function such as f(x)=1/x (Fig.4.37),
which inverts the real numbers with respect to a “circle” of radius 1 centered at 0.
In effect, the real function f(x) = 1/x considers just one line through the center of
inversion, and 1 and —1I are the only points on the “circle.” Complex numbers, of the
form a + bi, provide a way to represent inversions on the plane. However, Example 1
shows that we need a more sophisticated function than just 1/x to represent inversions in
the plane. Just as we needed to add a point, 0o, to the Euclidean plane to make inversions
transformations, we need to extend the complex numbers. We write C# for the extended
complex numbers, or the usual complex numbers and oo, which is the limit of a + bi as
a — oo or b — oo or both.

Consider the function f defined on the complex numbers by f(z) = 1/z. Figure 4.38
shows the images of various complex numbers. Verify that 1/(a + bi) = (a — bi)/
(a® 4 b*) by multiplying by a + bi. Verify that f(i) = —2i, (2 —2i) =1+ }i,

and f(—=1-2i)= —% + %i. Points inside the unit circle are mapped to points outside

2i4

~l+ie

!Di-;
o

Figure4.38  f(2)=1.

Theorem 4.6.4

Example 2

Definition 4.6.3
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that circle, and vice versa. However, a point and its image are not on a line with the
origin. Instead, there is a mirror reflection over the x-axis (real axis) in addition to
the inversion. Fortunately, a fairly simple complex function acts as a mirror reflection
over that axis: complex conjugation. Recall that a + bi =a — bi. A complex number z
and its conjugate Z are mirror images with respect to the x-axis. Hence we can define
the inversion with respect to the unit circle as v(z) = m Verify that v(a + bi) =
(a + bi)/(a* + b?), a positive scalar multiple of a + bi. @

The inversion with respect to the circle of radius r and center w is given by v(z) =
r2/(z — w) + w, for z # w.

Proof.  First, show that this formula works when w = 04 0i = 0. In this case, vo(z)
reduces to r2/z. The product z - r2/z has a length of r2, showing that r2/z is the correct
distance from the origin. To complete this case, show that 0, z, and r2/z are on the same
ray. Letz =a + bi. Then 1/z = (a — bi)/(a® 4+ b?),and r2/z = r’(a + bi)/ (a* + b*) =
r2z/(a® + b?), a positive real scalar multiple of z.

We use the method in Example 3 of Section 4.3to develop the general formula.
The addition of w to every complex number is a translation T of the complex plane. The
formula v(z) = r2/(z — w) + w is the composition 7 o vy o =1, which is an inversion
because translations do not alter distance. To verify that this is the desired formula, let
z be any point on the circle of radius r and center w. Then z — w is a point on the circle
of radius r at the origin. This condition implies that r2/(z — w) = z — w from the first
part. The addition of w now takes this point back to z. Thus every point on the desired
circle of inversion is fixed, proving the theorem. m

Find the transformation of the extended complexes C# that is the composition of the
inversions 1/z followed by 4/z.

Solution. When we replace the z of 4/z with 1/z, we get 4/(1/z) = ((4z)) = 4z. This
outcome is a similarity (dilation) with a scaling factor of 4. @

Compositions of inversions can be similarities (as in Example 2), hyperbolic isome-
tries, or other transformations. The transformation group that contains the inversions
and their compositions is called the Mobius transformations, after Augustus Mobius,
one of the first mathematicians to understand the importance of transformations in ge-
ometry. Mobius transformations, which leave a circle H stable, are the isometries for
the Poincaré model of hyperbolic geometry. These transformations, as Theorem 4.6.6
shows, preserve angles, an important fact both in complex analysis and in geometry. In
complex analysis, transformations preserving angles are called conformal.

A Mdbius transformation is a function of the extended complex numbers C# that is
one-to-one, onto, and has one of the two forms f(z) = (pz+¢q)/(rz +s) or f(z2) =
(pz+q)/(rz+s), where z # —s/r. We define f(—s/r) = oo and f(oco)= p/r, or
p/r, in the second form. The constants must satisfy ps — gr # 0.
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AUGUSTUS MOBIUS

Augustus Mobius (1790-1868) earned his living as an astronomer in Leipzig, Germany,
but achieved international recognition as a geometer. His absentminded concentration
on mathematics often caused him to forget his keys or other things. He was very shy,
which may have led him to avoid a controversy at the time between geometers about
which approach, synthetic or analytic, was superior. From a modern vantage point
the quarrel seems pointless because these approaches complement one another. His;
work built on both approaches. In 1827 he invented batycentric coordinates, which he
developed into homogeneous coordinates for projective geometry. (See Sections 2.3 and
6.3.) Julius Plucker (1801-1868) developed these coordinates into the first analytic model
for projective geometry, then the cutting edge of synthetic geometry research.

Forty-five years before Klein’s Erlanger Programm, Mébius investigated transfor-
mations in geometry. Even without the powerful framework of group theory, he was
able to initiate the study of isometries, similarities, affine transformations, and the
transformations of projective geometry. He also developed the geometry of inversions
and investigated the complex transformations that now bear his name. Later in life, he
initiated the study of topological transformations. At age 68, he discovered the Mdbius
strip, a mathematical model with the curious topological property that it has just one side
and one edge as shown in the accompanying figure.

A Mobius strip.

Exercise 3 Explain why f(—s/r) = oo and why f(z) = (pz + q)/(rz + s) should go to the limit
p/r as z gets larger. Explain how to rewrite the inversions of Theorem 4.6.4 as Mdbius
transformations.

Theorem 4.6.5 The set of Mobius transformations is a transformation group.

Proof. See Problem 8. =

Theorem 4.6.6 MGobius transformations preserve angle measure.
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ve(m)

Figure 4.39

Proof. A general Mdobius transformation can be written as a composition of simi-
larities and inversions. (See Problem 6.) We already know from Theorem 4.4.3 that
similarities preserve angles. Hence we only need to show that inversions preserve
angles.

Recall that the angle between two curves is the angle that their tangents make at
their intersection. As shown in Fig. 4.39, we know the angle between two tangents at P
and are to show that the corresponding angle at P’ has the same measure. We simplify
this proof ch_s)mparing the angles that one of these tangents and its corresponding circle
make with O P (Fig. 4.40). We show that /P P'Q’ = /O P A and then the angles for the
other tangent and circle follow. Then we get the desired preservation of angles in Fig.
4.39 by adding the measures of these angles.

In Fig. 4.40, £O P'A’ is aright angle because OA’is adiameter, and /O'P'Q’ is a
right angle because P’Q’ is tangent to the circle and O'P’ is a radius. Thus /O P'O' =
LA'P'Q’. Also /P'OO'= /O P'0O’ because AOO'P' is isosceles. Thus /A'P'Q' =
[P'OO’. Angles /O P A and / P’'O O’ are complementary because they are in a right
triangle. Angles /P P'Q’ and /A’ P’ Q' together form a right angle, so they are comple-
mentary. Hence /P P'Q' = /O PA, as required. =

The fundamental concept of a transformation has great significance in mathematics,
linking geometry and algebra. The transformations presented are important throughout
mathematics and its applications. In addition, there are many groups of transformations
beyond those discussed here, including far more general ones in topology.
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PROBLEMS FOR SECTION 4.6

1.

a) Find distinct circles C and D for which
ve(4,0) =vp(4,0) = (1,0).

b) Explain why the center of any circle C or D for
part (a) must be on the x-axis. Can every point
on the x-axis be the center of such a circle of
inversion? Explain.

¢) Find a formula for the radius of the circle from
part (b) in terms of the center. [Hint: Look first at
centers to the left of (1, 0). Consider the distances
from the center to (1, 0) and to (4, 0).]

a) Let P be any point outside the circle of inversion
C with center O. Draw the tangents from P to C
and let their points of intersection with C be O
and R. Prove that the inversive image of P is the

= s % S -
point of intersection of O P and QR. Illustrate
your proof.

b) Give a construction of the inversive image of a

point that is inside the circle of inversion. Prove
your construction correct.

. In Problem 2, the line ﬁ is perpendicular to 0P

and through the inversive image of P. Such a line is
called the polar of P, and P is called the pole of the
line a—é with respect to the circle C. Note that the
definition of a pole and a polar don’t depend on the
point being outside the circle. Prove that, if a point
U is on the polar of a point P, then P is on the polar
of U. Draw a diagram for your proof.

Figure 4.40

4. A circle D passes through a point P and the inversive

image P’ of P with respect to the circle C, where
P # P'. Prove that D is orthogonal to C. [Hint:
Assume that three noncollinear points determine a
circle and that any path from inside a circle to outside
the circle must intersect the circle.]

5. Let P’, @', and R’ be the inversive images of

P, O, and R with respect to a circle C. Does

Theorem 4.6.6 imply that APQR ~ AP'Q'R"?
Explore this question by using a particular circle
and points. Explain your answer.

6. This problem investigates similarities as Mobius

transformations.

a) Describe the similarity f(z) = z + (a + bi).

b) If a is a nonzero real number, what similarity
i f(z) = az? If a + bi is on the unit circle,
what similarity is f(z) = (a + bi)z? If a + bi is
any nonzero complex number, what similarity is
f(2) = (a+bi)z?

¢) What similarity is f(z) =z?

d) Prove that f(z) = (pz +¢q)/s and f(z) =
(pz + q)/s are similarities for any complex

numbers p, ¢, and s, where p and s are not
0.

e) Prove that any Mobius transformation is the
composition of a similarity and at most one
inversion.

7. Mobius transformations are used to convert the half-

plane model to the Poincaré model and vice versa.
As Poincaré knew, this procedure implies that the
hyperbolic isometries of the half-plane model are
Mobius transformations.

a) Find the function for the inversion ve with
respect to a circle with radius v/2 and center
at —2i,

b) Find the function for the inversion vp with
respect to a circle with radius 2 and center at
=3i.

¢) Find a circle E that is the image of the real axis
under v¢. Verify that the points above the axis
(a + bi, with b > 0) are mapped to the interior of
the circle. Draw a picture.

d) Verify that the unit circle is the image of circle E
under vp. Verify that the points inside circle E
are mapped to points inside the unit circle. Draw
a picture.

e) The composition vp o vc maps the half-plane
model to the Poincaré model. For the point
(0, 1) =i from the half-plane model find its
image in the Poincaré model.

f) Find a composition of inversions that converts
the Poincaré model to the half-plane model.

PROJECTS FOR CHAPTER 4

1. Place two mirrors at an angle facing each other with

a shape in their interior. Investigate the multiple
images of this shape, with the use of a protractor.

a) How do the images move as you move the
original shape closer to one of the mirrors?

b) For mirror angles of 90°, 60°, 45° and smaller,
count the number of images (plus the original
shape) that you can see. Find a formula relating
the angle and the number of images.

¢) Use an asymmetric shape so that you can distin-
guish the orientation of the images. Describe the
orientation of successive images of the original
shape. For various mirror angles, measure as best
as you can with a protractor the angle between
the original shape and the first image having the
same orientation. How does this angle relate to
the mirror angle?
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8. a) Show that the composition of two Mdbius trans-

formations is again a Mébius transformation.
[Hint: First leave out the complex conjugates.
Then describe how complex conjugates affect the
compositions.]

b) Show that the inverse of a Mobius transformation
is a Mobius transformation. [Hint: solve w =
(pz+q)/(rz+s) forz.]

¢) Prove that the Mobius transformations form a
transformation group.

. In complex analysis C# is often represented on the

surface of a sphere. Imagine a sphere of radius 1 with
its south pole on the origin of the complex numbers.
Then match complex numbers with the points on
the sphere as follows. Draw a line from the north
pole to a complex number. Where this line intersects
the sphere (besides the north pole) is the matching
point. The north pole acts as the infinity point co.
(In reverse, this process is called the stereographic
projection of the sphere.)

a) Illustrate the process of matching complex
numbers to the points on the sphere.

b) What on the sphere corresponds to the circle
x? + y? = 47 What spherical isometry corre-
sponds to the inversion with respect to this circle?

. Place two mirrors parallel and facing each other

with a shape in their interior. Investigate the multiple
images of this shape.

a) How do the images move as you move the
original shape closer to one of the mirrors?

b) Use an asymmetric shape so that you can dis-
tinguish the orientation of the images. Describe
the orientation of successive images of the orig-
inal shape. For various distances between the
mirrors, measure as best as you can with a ruler
the distance between the original shape and the
first image having the same orientation. Relate
the distance between the mirrors and the distance
between the original and this image.

. Place three mirrors facing each other to make three

sides of a square with an asymmetric shape inside
the square. Investigate the multiple images of this
shape.
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a) Make a diagram showing the various images and
their orientations.

b) Which images have the same orientation as
the original shape and which have the opposite
orientation?

¢) Indicate on the diagram in part (a) which
isometry produces each image.

- Use the Geometer’s Sketchpad or CABRI to exper-
iment with the effects of elementary transforma-
tions. Find the image of a triangle under various
transformations and their compositions. Investigate
Theorems 4.2.3-4.2.6.

. On a transparency, draw axes and randomly insert
numerous small dots (Fig. 4.41). Photocopy this
transparency and align the transparency on top of the
copy.

o
Sq o

Figure 4.41

a) Rotate by a small angle the transparency relative
to the paper around their common origin. De-
scribe the pattern that the two sets of dots form.
Translate the transparency relative to the paper
and describe the resulting pattern. Try this proce-
dure with other translations and small rotations.
What can you say about the composition of a
rotation followed by a translation?

b) Switch the order and repeat part (a). What can
you say about the composition of a translation

6.

10.

followed by a rotation? Do you get the same
transformation regardless of the order?

¢) Each composition in part (a) has a fixed point.
Keep the initial angle of rotation the same and
describe what happens to the fixed point as you
use increasingly long translations in the same
direction.

d) Repeat part (c), using the switched order of part
(b). Compare these fixed points with those in part

(c).

e) Experiment with two rotations of small angles
around different points. Based on the two centers
and the angles of rotation, can you predict where
the new center of rotation will be?

Investigate geometric applications of inversions.
(See Eves [4, 84-91] and Greenberg [6, 257-262].)

- Recall that an equivalence relation = on a set § is

reflexive, symmetric, and transitive. (See Gallian [5,

13-15].)

a) Suppose that G is a group of transformations
on a set § and that, fora, b € S, we definea = b
whenever there is some « € G such that a(a) = b.
Prove that = is an equivalence relation.

b) Suppose that = is an equivalence relation on a set
§ and that we define G to be all transformations
a on S such that, for all a € S, a = a(a). Prove
that G is a transformation group.

c) Let S be the set of all lines in the Euclidean plane
and interpret = as parallel. What is G in part (b)?

d) Let G be the transformation group of isometries
of the Euclidean plane and S be the set of all line
segments. Describe =.

e) Repeat part (d) with S being the set of all triples
of points.

f) Describe other groups of transformations and
equivalence relations.

. Investigate transformations in CAD programs. (See

Mortenson [8].)

. Investigate iterated function systems (IFSs). (See

Barnsley [2] and the software, “The Desktop Fractal
Design System,” [6] under Suggested Media.)

Prove the three-dimensional analogs of Theo-
rems 4.2.2-4.2.5

a) A three-dimensional Euclidean isometry fixing

four points not all in the same plane is the
identity.

11.

12.

13.

14.

15.

16.

b) Any three-dimensional Euclidean isometry is
determined by where it maps four points not all
in the same plane.

¢) Given any two distinct points in three-
dimensional Euclidean space, there is a unique
mirror reflection switching these two points.

d) Every three-dimensional Euclidean isometry can
be written as the composition of at most four
mirror reflections.

State the analogs of Theorems 4.2.2-4.2.7 in n-

dimensional Euclidean geometry.

Define similarities in three dimensions. State

the analogs of Theorems 4.4.1-4.4.3 for three-

dimensional similarities and prove them.

Define similarities in n-dimensions. State the

analogs of Theorems 4.4.1-4.4.4 for n-dimensional

similarities.

Investigate Theorem 4.4.6 on convex sets in n

dimensions.

Investigate stereographic projections and other

mappings of a sphere to a plane. (See Hilbert and

Cohn-Vossen [7, 248-263].)

(Calculus) Vertical lines play a special role in

calculus because functions have just one y-value

for any x-value.

a) Prove that an affine matrix maps vertical lines to

a 0 ¢
vertical lines iff it is of the form | d e f :l
0 0 1

Prove such matrices form a transformation group.

b) Investigate what happens to the points (x, x2, 1)
on the parabola y = x? under the matrix

2 0 1
|: 1 10 ] Graph the resulting curve. Does
0 0 1
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the minimum point on the original curve get

mapped to the minimum point on the image?
Find the equation of the new function h. [Hint:
If w=2x + 1, write y = h(w) in terms of x and
then replace x by (w — 1)/2. Explain why this
hint works.]

¢) Show that the affine matrix in part (a) transforms
the function y = g(x) to the function h(ax +¢) =
dx +e-gx)+ f.

d) If the function g in part (c) has a derivative at
every point, what can you say about the derivative
of the function A? Can you find the relative
maxima and minima of 47 Be sure that your
answers match with what you found in part (b).
Experiment with other polynomials for g. What
can you say about the second derivatives of g and
h from part (c)?

Investigate hyperbolic geometry transformations.
(See Greenberg [6].)

Investigate dynamical systems. (See Abraham and
Shaw [1].)

Investigate topological transformations. Describe
properties preserved by transformations that are
more general than affine. (See Smart [9, Chapter 8].)
Investigate the use of transformations in biology.
(See Thompson [10].)

Investigate the history of transformational geometry.
(See Yaglom [11].)

Write an essay discussing Klein’s definition of
geometry in light of the variety in groups of
transformations presented in this chapter.
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