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¢) The matrices A and D of this problem are two of to maps on the unit square; that is, the points (x, y, 1)
the four matrices in Example 5. Explain how the satisfying 0 < x < 1 and 0 < y < 1. Find restrictions
limit set of this IFS relates to the one shown in on the coefficients of an affine matrix so that it will
Fig. 4.25. be a contraction mapping that sends the unit square

12. For ease of programming, IFSs are often restricted

into itself.

4.5 TRANSFORMATIONS IN HIGHER DIMENSIONS;
COMPUTER-AIDED DESIGN

Intel"pretation

Example 1

Exercise 1

Transformations in three and more dimensions illustrate the power of linear algebra.
We utilize the same method we used in two dimensions to move the origin: We add
an extra coordinate to the vectors and represent transformations by the corresponding
matrices. To generalize the definition of isometries to three and more dimensions we
use the isometries of the sphere.

By a point in three-dimensional affine space, we mean a column vector (x, y, z, 1). By
three-dimensional affine matrix we mean an invertible 4 x 4 matrix whose bottom row
is[0 O 0 11

1 0 0 p
; 010 ¢ . J P el ’
The translation 7 = 00 1 r |moves all points by p in the x-direction, g in the
0 0 0 1

y-direction, and r in the z-direction. Note the final column gives the image of the origin
(0, 0,0, 1). The upper left 3 x 3 submatrix describes the transformation type. @

Explain why the bottom row of an affine transformation mustbe [0 0 0 1].

4.5.1 Isometries of the sphere

Example 2

Exercise 2

Any affine transformation that maps the unit sphere to itself necessarily maps the origin
to itself. Hence spherical isometries can be represented as 3 x 3 matrices, in effect the
upper left corner of the 4 x 4 affine transformations. These isometries give insights
about isometries in all dimensions and the symmetries of polyhedra.

010
The transformation p=| 0 0 1 | is arotation of the sphere (and all of R?). Points
1 0 0

of the form A = (a, a, a) are fixed by p and so form the axis of rotation. Furthermore,
p(a, b, c) = (b, c, a), so the composition of p three times will take every point back to
itself, showing the angle of rotation to be 120°. In particular, the x-, y- and z-axes map to
one another (Fig. 4.29). The determinant of the matrix p is 1, just like two-dimensional
rotations. @

1 0 0
Verify that the transformation = | 0 0 —1 | has determinant —1 and that wu? is
0 -1 0 .
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Example 3

Figure 4.29 A rotation of 120°
around x = y = z.

Figure 4.30 A mirror reflection
in the plane y + z = 0.

the identity, indicating that p is a mirror reflection. It leaves the plane y + z = 0 fixed
(Fig. 4.30).

We can compose rotations and mirror reflections to form the only other isometries
of the sphere, rotatory reflections, illustrated in Example 3. (Translations and glide
reflections have no fixed points, so they aren’t isometries of the sphere.)

0 -1 0 1 0 0 0 -1 0
The rotatory reflection| 1 0 0 |=]0 1 O (-] 1 0 O |isthecom-
0 0 -1 0 0 -1 0 0 1

position of a rotation of 90° around the z-axis followed by a mirror reflection over the
plane z = 0 (the equator) (Fig. 4.31). The eigenvalues of this matrix are —1, i, and —i,
which show that there is no fixed point. The opposite points (0, 0, 1) and (0, 0, —1) are
mapped to each other. @

Figure 4.31 A rotary reflection composed of a 90° rotation and a
mirror reflection.

Definition 4.5.1

Theorem 4.5.1

Theorem 4.5.2
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A rotation in three-dimensional Euclidean geometry fixes the points on one line, called
the axis of rotation, and rotates all other points through a set angle around that axis. A
mirror reflection over a plane S in three-dimensional Euclidean geometry maps every
point P to the point Q such that S is the perpendicular bisector of P Q. A rotatory
reflection in three-dimensional Euclidean geometry is the composition of a rotation with
a mirror reflection in a plane perpendicular to the axis of rotation.

A spherical isometry must map the unit basis vectors (1, 0,0), (0,1,0), and (0,0, 1)
to mutually perpendicular unit vectors, leading to the algebraic description of these
isometries in Theorem 4.5.1. Theorem 4.5.2 gives a more geometric description of
spherical isometries, although its proof depends on linear algebra.

The following statements are equivalent.

i) A3 x 3 matrix M is an isometry of the unit sphere.
ii) The columns of M form an orthonormal basis of R3.
iii) M~!= MT, the transpose of M.
Proof. See Problem4. m

Every isometry of the sphere has at least two opposite points on the sphere that are
either fixed or are mapped to each other. The circle on the sphere midway between these
opposite points is stable.

Proof. When we use eigenvalues to find fixed points (and stable lines), we obtain
an equation in A called the characteristic equation. The characteristic equation of a
3 x 3 matrix involves a third-degree real polynomial. All odd-degree real polynomials
have a real root, so every isometry of the sphere has at least one real eigenvalue. For
that eigenvalue, any eigenvector of length 1 is a point on the sphere. The matrix being
considered is an isometry, so the point will be mapped back onto the sphere. Thus the
image also has length 1, which means that the real eigenvalue is either 1 or —1. For an
eigenvalue of +1, the eigenvector (point) is fixed, as is its negative (opposite point). For
—1, the point and its opposite change places. In either case, the circle midway between
these two points must be stable because the transformation is an isometry. =

4.5.2 Transformations in three and more dimensions

Example 4

We obtain all isometries of R* by combining in our general 4 x 4 matrix the 3 x 3
submatrix, representing an isometry of the sphere, and the final column of the matrix,
representing a translation. In effect, we can build any isometry by composing these
two special cases. In addition to the rotations, translations, mirror reflections, and
glide reflections from two dimensions, there are two other types of three-dimensional
isometries. Rotatory reflections, as we showed, are isometries of the sphere. Figure 4.32
illustrates the other type: screw motions.

cos® —sinf 0 0
The matrix R = su(; o COS 4 (1) 8 represents a rotation of 6 around the z-axis.
0 0 0 1
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Exercise 3

Theorem 4.5.3

Definition 4.5.2

Transformational Geometry

7
5

Figure 4.32 A screw motion.

A point (0, 0, k, 1) on the z-axis is fixed by R. Also, each plane z = k is stable under
R because R(x, y, k, 1) has k for its third coordinate. We define a screw motion as the

composition of a rotation and a translation in the direction of the axis of rotation—for
1 0 0O

example, RZ, where Z = . Verify that RZ=ZR. e

00 00O
0 01 z
0 0 01
Give definitions for translations and glide reflections in three dimensions.

Every three-dimensional Euclidean isometry can be written as the composition of at
most four mirror reflections. There are three types of three-dimensional direct Euclidean
isometries: translations, rotations, and screw motions; and three indirect types: mirror
reflections, glide reflections, and rotatory reflections.

Proof. See Project 7 and Coxeter [3]. m

In Section 4.3 we used row vectors [a, b, c] to represent a line, or the set of points
satisfying the equation ax + by + ¢ = 0. In three dimensions [a, b, ¢, d] represent a
plane, the points satisfying ax + by +cz +d =0.

By now the pattern may be clear: For points in n-dimensional affine space, use
column vectors with n + 1 coordinates, the last of which is 1. The corresponding row
vectors are, in general, called hyperplanes and are (n — 1)-dimensional. The affine
transformations will be (n + 1) x (n + 1) invertible matrices whose bottom row is
[0 ... O 1].Theupperleftn x n corner tells us, up to a translation, what type of
a transformation we have. Theorem 4.5.1 leads to the definition of isometries in higher
dimensions. '

An (n 4+ 1) x (n + 1) invertible matrix is an affine matrix iff its bottom row is
[0 O 1]. An n x n matrix M is orthogonal iff M~'=MT, where MT is the

Exercise 4

Exercise 5
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transpose of M. An (n+1) x (n+1) affine matrix is an isometry iff its upper left n x n
submatrix is orthogonal.

Verify that two-dimensional isometries satisfy this definition.

Define translations in n-dimensional space. What does the matrix of a translation in n
dimensions look like?

4.53 Computer-aided design and transformations

Exercise 6

Theorem 4.5.4

Example 5

A CAD program stores the various reference points of a design as the columns in a
matrix. Matrices quickly provide the images of these points for other views of figures.
The transformations of Chapter 6 enable engineers and others to give perspective views
of designs by altering the bottom row of affine matrices.

Draw the quadrilateral in the plane whose four corners have the columns of

1 0 -2 -1 06 —08 1]
A=|0 2 1 =3 | fortheir coordinates. For the rotationp=| 0.8 06 0
1 1 1 1 0 0

1
1.6 —-06 —1 28 ]
of approximately 53° around (0.5, 1, 1), the product pA= | 0.8 1.2 -1 -2.6
1 1 1 1
gives the matrix whose columns are the images under p of the four corners of this
quadrilateral. Draw the resulting quadrilateral on the same axes as the original one.

Let o be an n-dimensional affine transformation and A be an (n + 1) x k matrix whose
columns Aj, Ao, . . ., A are k points in n-dimensional affine space. Then the columns
of aA are a(Ay), a(A3), . . ., a(Ag).

Proof. See Problem7. =

As a result of Theorem 4.5.4, once the computer has been given the new reference
points, it can redraw the various lines, curves, and surfaces among them in the same
manner as originally. The analytic geometry of Chapter 2 combined with the linear
algebra of this chapter provide the graphics of CAD. Computers also use matrices to
present three-dimensional designs as two-dimensional graphics displays and printouts.
These matrices aren’t transformations since they aren’t one-to-one. (See Mortenson [8].)

The matrix

0
?) maps every point of three dimensions orthogonally onto
1

SO OO

1 0
0 1
0 0
0 0
the xy-plane. Thus two points with the same z-coordinate will'be mapped to the same
point. Note that the determinant of this matrix is 0. e
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PROBLEMS FOR SECTION 4.5
-1 0 0 O

1. a) Explain why g _01 (1) g is a 180°
0 0 0 1

rotation around the z-axis.

b) Find the matrices for rotations of 180° around
the x- and y-axes. What is the product of these
two matrices? What is the product of one of these
matrices with the matrix in part (a)?

¢) Verify your answers in part (b) physically by
rotating a cube 180° around the centers of two
opposite faces, followed by a 180° rotation
around the centers of two other opposite faces.
Mark several points on the cube so that you can
recognize their starting and ending positions.

d) Repeat part (c) with 90° rotations and describe
the resulting transformation.

e) Find the matrices for the 90° rotations in part (d)
and multiply them. Describe the product.

f) Describe the matrix for a rotation of # around the
X-axis.

. The central symmetry with respect to Q takes each

point P to the point P’, where Q is the midpoint of

P P'. In two dimensions, this isometry is a rotation

of 180°, often called a half-turn.

a) Find the matrix form of a central symmetry in
three dimensions and decide what type of an
isometry it is. Explain your answer.

b) Describe the composition of two three-
dimensional central symmetries.

¢) Repeat parts (a) and (b) for four and more
dimensions.

. Find the matrix for a screw motion made of a rotation
of 6 around the y-axis followed by a translation in
the y-direction by y. Verify that you get the same
screw motion if you first translate and then rotate.

. Prove Theorem 4.5.1. [Hint: The ijth entry in
the product AB is the inner product of the ith
row of A and the jth column of B. Recall that,
in an orthonormal basis, the vectors are mutually
perpendicular and have length 1. ‘
. a) Prove that the set of spherical isomelries is a
transformation group.

b) Prove that the set of orthogonal n x n matrices is
a transformation group.

¢) Use the definition of an orthogonal matrix to
prove that its determinant must be either +1
or —1. Why does this proof guarantee that the
determinant of an n-dimensional isometry must
also be +1 or —1? (As in two dimensions,
the direct isometries have a determinant of
+1, whereas the indirect isometries have a
determinant of —1.)

. a) Define a three-dimensional similarity with a

scaling ratio of r.

b) Explain why every three-dimensional similarity
can be written as the product of an isometry and

a dilation centered at the origin, represented by
r 00 0

0 r 00
00 r O
0 0 0 1

¢) What is the determinant of a three-dimensional
similarity with a scaling ratio of r? What does this
determinant tell you about a three-dimensional
object, such as a cube, and its image under a
similarity?

. Prove Theorem 4.5 4.

. Rotations in four dimensions extrapolate properties

of rotations in two and three dimensions. For

convenience, use 4 x 4 orthogonal matrices so that

the origin (0, 0, 0, 0) is fixed.

a) Describe what is fixed by a rotation in two
dimensions and by a rotation in three dimensions.
What should be fixed by a rotation in four
dimensions?

b) Verify the following matrices are orthogonal with
determinants of +1.

0 -1 0 0 0 0 -1 0
|1 0o 00|, o1 0 o0
A=10 o 1 0]'2=[10 0 o)
0 0 0 1 00 0 1
100 01
010 0
andC—I:OOO_1
001 0]

¢) The preceding matrices are rotations of the four-

dimensional sphere. Find all of their fixed points
(“axes”) and angles of rotation.

d) Find the products and fixed points of AB and AC.

Describe how they differ. One of these products
is again a rotation. Decide which product is a
rotation and what its angle of rotation is. What
can you say about the other product?

9, Recall that the standard basis of R" is the set
{(1,0,0,...,0),(0,1,0,...,0),...,(0,...0,D}.

4.6 Inversions and the Complex Plane 167

a) Prove that an n x n matrix is orthogonal iff it
maps the standard basis vectors to an orthonormal
basis of R".

b) Explain why orthogonal n x n matrices will be
isometries of the n-dimensional unit sphere.

¢) Explain why the matrices we defined to be n-
dimensional isometries actually are isometries.



