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angles are Euclidean properties, as is the shape of a figure. However, the orientation of
figures isn’t a Euclidean property because mirror reflections and glide reflections switch
orientation. Also, verticality isn’t a Euclidean property because some isometries, such
as a rotation of 45°, tilt vertical lines. If we wanted to study orientation or verticality,
we would need to use different groups of transformations, and, according to Klein, we
would be studying a different geometry.

PROBLEMS FOR SECTION 4.2

1. Suppose that an isometry B takes (1, 0) to (—1, 0),
(2,0)to (=1, —1) and 0,2) to (1, 1), respectively.
Find the images of (0, 0) and (2, 2) and of a general
point (x, y). Draw a figure showing these points and
their images.

- Outline the original placement of a small rectangular
piece of paper on a larger piece of paper. Label the
corners of both the small rectangle and the outline
A, B, C, and D so that you can determine the
rectangle’s movements. Note that the centers of
rotation are on the outline and do not move.

a) Rotate the small rectangle 180° around A and
then 180° around C on the outline. Describe the
resulting transformation.

b) Return the small piece of paper to its starting
position and repeat part (a) but switch the
order of the rotations. Describe how this new
transformation differs from the one in part (a).

¢) Repeat parts (a) and (b) but use rotations of 90°
at A and C.

d) Repeat part (c) but rotate the rectangle 90° around
A followed by a rotation of —90° around C.

€) Repeat part (c) with various angles and centers of
rotations. Make a conjecture about the resulting
transformations.

. a) If puy is a mirror reflection over the line k and 1
is a translation in the direction of k, investigate
whether 4 o T = 7 0 uy and justify your answer.
[Hint: It may help to do this first physically with
a triangle placed on a sheet of paper. Draw the
line k on the paper. Geometer’s Sketchpad or
CABRI also will help.]

b) Find three mirror reflections whose composition
is a glide reflection.

¢) What is the composition of a glide reflection with
itself? Justify your answer,

4.

a) If « is an isometry which fixes two points, prove
that « is the identity or the mirror reflection over
the line through the fixed points.

b) If « and B are isometries such that «'(A) = B(A)
and a(B) = B(B), prove thato = Bora =B o u,
where u is the mirror reflection over the line AB.

. Let k and m be parallel with a perpendicular

>

distance of d between them and py and p,, be
the mirror reflections over these lines. Prove that
Mk © Wy, i a translation of length 24 in the direction
perpendicular to k and m. [Hint: In Fig. 4.10 select
the midpoint of A and “m(A), as well as another
point on m. These points form congruent triangles
with A and u,,(A). Repeat with the line k. Analyze
other cases similarly.] Also prove that p,, o i and
Mk © Wy, are inverses.

- Let k and m intersect at point P and form an angle of

r° and py and p,, be the mirror reflections over these
lines. Prove that 1 o Mm is a rotation of 2r° around
P. [Hint: In Fig. 4.11 let Q be the midpoint of A
and @, (A). Use triangles AP A Q and APu,(A)Q.
Continue as in Problem 5. Decide what other cases,
besides those in Fig. 4.11, can occur.] Also prove
that 41, o yx and py o w1, are inverses.

. Let O be between P and R on a Euclidean line.

Explain why, for any isometry o, a(Q) is between
o (P) and a(R) and all three are on a line.

. Let p; and p, be any two rotations. Prove that their

composition p) o p; is a translation, a rotation, or
the identity. Find the conditions that are necessary
and sufficient for the composition p; o py to be a
translation.

Let 7; and 7, be two translations and P and 0 be two
points. How are 7, o 7; and 1/ o 7, related? Draw a
figure showing P, Q, 7,(P), 7;(Q), t2(z;(P)), and

72(71(Q)). Prove that the composition t; o 75 is a
translation. [Hint: Use SAS.]

10.

11.

12.
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Prove that D, the set of all direct isometries of the
Euclidean plane, is a transformation group. Note that
D preserves orientation in addition to all Euclidean
properties.

Let V be the set of all Euclidean plane isometries
that take vertical lines to vertical lines. Describe V
and prove that it is a transformation group.

Define twosets A ={A;:i€l)and B= (B, :i € I}
to be congruent, written A = B, iff forall i, j € I,

13.

b) Why are any two lines congruent under this
definition? ‘

¢) Why are circles with equal radii congruent under
this definition?

Define two sets A and B to be isometric iff there is

an isometry « such that «(A) = B. The definition

of congruent sets in Problem 12 guarantees that

isometric sets are congruent. Show the converse

in Euclidean geometry: For any two congruent

d(A;, Aj) =d(B;, Bj).
a) Why are two triangles congruent under lhis_ Qeﬁ—
nition also congruent under the usual definition?

Euclidean plane sets A = {A; :i € I} and B = {B; :
i € I}, there is an isometry taking A to B. [Hint: Use
Theorem 4.2.3, its proof, and Theorem 4.2.5.]

[Hint: Consider the vertices of the triangles.]

4.3 ALGEBRAIC REPRESENTATION OF TRANSFORMATIONS

Example 1

How can a computer display various viewpoints, zooming in and rotating as t.he user
desires? Computer graphics software uses matrices and linear algebrfi exlenSJ.vely.to
compute such geometric transformations. (See Section 6.6 for more mformahc')n', in-
cluding the use of perspective.) This algebraic representation helped mathemgtmans,
physicists, and others in many fields long before the advent of computers.. Matrices and
linear algebra also give a deeper insight into transformations. For convenience we often
identify a transformation by its matrix. o

If M is a matrix and P is a point, we write Q =M - P or Q = M P to indicate
that Q is the image of P by the transformation represented by M. This notation.ﬁts
well with that of functions, y = f(x), and follows standard linear algebra notation.

. 2
However, it means that points are column vectors—for example 3| rather than the

familiar ordered pair (2, 3). Column vectors are awkward to print in the body of the text,
X

so we will write the column vector as (x,x2,...,x,). We use row vectors, such
Xn

as [xy, x2, . . ., x,], to represent lines.

b + b . la b .
Recall that [3 . ] l:); ] = [3;: 4 e; ] Thus the matrix [d . ] defines a transfor-

. 0
mation taking (x, y) to (ax + by, dx + ey). The matrix R = [ T ] represents the

. 2 0
rotation of 90° around the origin (Fig. 4.14). The matrix D = [0 2] doubles each
- : . 0.6 0.8 ]
point’s distance from the origin (Fig. 4.15). The matrix M = 08 —06 | Fepresents

the mirror reflection over the line y = %x (Fig. 4.16). Select various points, such. as
(=1, 1) and (1, 2), and find their images under these matrices to verify the preceding

statements. @
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\_’.

Figure 4.14

In Example 1 ﬁnd the product R - R and verify that it represents a rotation of 180°
around the origin. Similarly, find M - M and verify that it represents the identity trans-

formation. Find the inverse of D and verify that it halves each point’s distance from the
origin.

The preceding examples indicate that two-by-two matrices can represent a variety
of plane transformations. However, they have a fatal drawback for our purposes: They
all fix the origin (0, 0). Thus these matrices cannot represent nontrivial translations and
many other transformations. For example, the translation t (x, y) = (x + 3, y + 2) takes
(0,0) to (3, 2). The key difference of r from the preceding examples is the addition of
constants. Mathematicians have devised a simple way around this problem by using as
their model the plane z = 1 in R3. Clearly, it has the same geomeétric properties as R?,
which, in effect, is the plane z = 0. However, z = 1 has the key algebraic advantage

-

N\

- @

Figure 4.15

Interpretation

Exercise 2

Interpretation
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Figure 4.16

that all its points (x, y, 1), including the new “origin” (0, 0, 1), can be moved by 3 x 3
matrices. The third coordinate of (x, y, 1) does not really “do” anything. For example,
the distance between two points still depends only on their first two coordinates.

By a point of the Euclidean plane we mean any triple (x, y, 1), where x and y are real
numbers. The distance between (x, y, 1) and (1, v, 1) is \/(x —u)?+ (y —v)2

a b 0
Verify that the matrix | d e O | maps (x,y, 1) to (ax + by, dx + ey, 1) and so
0 0 1

” . . a
corresponds to the same transformation given in Example 1 as [

b e
4 e ] Verify that

1 0 3
the matrix | 0 1 2 | represents the translation t(x, y,-1) = (x + 3,y + 2, 1).
0 0 1

It is no accident that the bottom row of both matrices in Exercise 2 is [0 0 1]. This

a b ¢
restriction ensures that a general 3 x 3 matrix M = | d e f | maps the plane z = 1
g h i

to itself. That is, M - (x, y, 1) must equal (_, _, 1). This forces M to have g =h =0
and i = 1. A theorem of linear algebra states that a linear transformation is one-to-one
and onto the whole space iff its matrix is invertible or, equivalently, the determinant is
not zero. Hence an invertible 3 x 3 matrix represents a plane transformation provided
that its bottom row is [0 O 1]. We call the transformations for the plane z = 1 affine
transformations to distinguish them from linear transformations, which leave the origin
of the space fixed.

By (plane) affine matrix we mean any invertible 3 x 3 matrix whose bottom row is
[0 0 1].
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Verify that an affine matrix leaves (0, 0, 1) fixed provided that the last column of the
0

matrix is [ O |. Rewrite the matrices of Example 1 as affine matrices. Verify that
1

ae — bd is the determinant of

o AR
on o

()
f
1

Linear algebra provides an elegant interpretation of lines. Usually, a line is the set of
points (x, y) satisfying some equation ax + by + ¢ = 0. However, with triples (x, y, 1)
for points, the 1 has a natural place in that equation: ax + by +c¢-1=0.If we replace

the left-hand side by the product of a row vector and a column vector, the equation
x

la,b,cl| y
1
In ax + by + ¢ =0 if b # 0, we can solve the equation for y to get the familiar form

(Exercise 4). If b =0 and a # 0, we have a vertical line. (If b =0 = qa, the equation
reduces to ¢ = 0, which is not a line.)

= 0 suggests that we can represent a line by three coordinates la, b, c].

Verify that the familiar equation y = mx + b corresponds to [m, —1, b]. Verify that
vertical lines x = ¢ correspond to [1, 0, —c].

Note that for any nonzero k, [ka, kb, kc] represents the same line as [a, b, c] because
[ka, kb, kc)(x, y, 1) = k[a, b, c](x, y, 1). Technically, then, a line is “the equivalence
class of all row vectors djffering by a nonzero scalar.” However, for convenience, we
use a row vector [a, b, c] as the name of a line. This interpretation of lines ensures that
affine transformations map lines to lines and, in addition, that a general transformation
of the plane taking lines to lines must be one of these affine transformations. We know
that an affine matrix M moves a point P to M P, but where M takes a given line isn’t
obvious. Experiment with examples before reading the answer in Theorem 4.3.1.

A line is a row matrix [a, b, c] such that not both @ and b are 0. The point (x, y, 1) is on
the line [a, b, c] iff their product is 0: ax + by + ¢ - 1 = 0. Two row vectors represent
the same line iff one is the product of the other by a nonzero scalar.

Verify that the line [—2, —1, 1] is on the points (—1, 3, 1) and (2, —3, 1). Note that the
point (=2, —1, 1) is on the lines [—1, 3, 1] and [2, —3, 1]. There is a close relationship
between points and lines in this model, which we explore more deeply in Chapter 6.

The affine matrix M takes [a, b, c] to the line [a, b, c]M .

Proof. We need to show that, for any point (x, y, 1) on [a, b, c], the new point
M(x, y, 1) is on the proposed image of [a, b, c], namely, [a, b, c]M =1 The product of
the new line and point is [a, b, cJM~!-M(x, y, 1) =[a, b, c)I (x, y, 1) = [a, b, c](x, y, 1)
=0. =
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4.3.1 Isometries

Exercise 6

Theorem 4.3.2

Exercise 7

An affine matrix is readily determined by where it takes the three reference points
0=(0,0,1), X=(1,0,1), and Y = (0, 1, 1). Theorem 4.3.2 uses these points to
describe which affine matrices are isometries.

a b c
Verify that the images of the points O, X, and ¥ under the matrix M = | d e f
0 0 1
are O'=(c, f, 1), X'=(@+c,d+ f,1),and Y =(b+c,e+ f,1).
a b ¢ cosf —sinfh ¢
An affine matrix M = | d e f |isanisometryiff M=| sinf cosf f |or
0 0 1 0 0 1

cos 6 sin 6 c
M= sinf —cosf f |, for some angle 6.
0 0 1

Proof. (=) If M is an isometry, then, for the three points O’, X', and Y’ of Exercise 6,
AO'X'Y' = AOXY (Fig. 4.17). The distance d(O’, X') is Va? +d?. As M is an
isometry, a® + d* = 1. Then for some angle 6, a = cos # and d = sin 6. Similarly,
the distance d(0’, Y') = v/b? + €? forces b = cos ¢ and e = sin ¢, for some angle ¢.
Furthermore, m/X'0'Y’ = 90°. As Fig. 4.17 illustrates, ¢ = 6 = 90°. When ¢ =6 +
90°, the isometry is direct. When ¢ = 0 — 90°, the isometry is indirect. Trigonometry
gives sin(f & 90°) = %= cos € and cos(6 & 90°) = 7 sin 0.
(<) See Problem4. m

cosf® —sinf c
Verify that the determinant of | sin® cos®  f | is +1 and that the determinant
0 0 1
cosf sinf ¢
of | sin@ —cos® [ |is—1.
0 0 1

Isometries split naturally into two classes, as given in Theorem 4.3.2. Exercise 7
shows that determinants identify these classes. The first class, with determinant +1,
contains the direct isometries, for which 6 is the angle of rotation. If @ = 0, the direct

Figure 4.17
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isometry is a translation. An isometry of the second class, with determinant —1, is an
indirect isometry and its line of reflection makes an angle of /2 with the x-axis.

0 -1 2
Find the center of rotation of [ 1 0 3 | and the line of reflection of M =
0 0 1
06 08 2
0.8 —0.6 —4 |.Which lines are stable under M?
| 0 0 1
Solution. The center of this rotation is a fixed point, say, (u, v, 1), satisfying

[0 —1 271 [« u

1 03 v | = | v |. This equation reduces to —v+2=wu and u +3 = v,
|0 0 1 1 1
oru= —-% and v = 2%. We can find the fixed points of M similarly, obtaining the pair

of equations —0.4u + 0.8v + 2 =0 and 0.84 — 1.6v — 4 = 0. The second is a multiple
of the first, so we get an infinite family of fixed points, («, %u — 2%, 1). That is, all the
fixed points are on the line of reflection [%, -1, —2%] or, more familiarly, y = %x - 2%.
The other stable lines of M need a more general approach because for any nonzero mul-
tiple A, Ala, b, c] is the same line as [a, b, c]. We need to solve [a, b, cIM~!=\la, b, c]
but first have to find the possible values of A. We need [a, b, c]M ~l = Ala, b, c] =
Ala, b, ]I or, equivalently, [a, b, c}(M~' — AI) = 0. That is, the matrix (M ' — AI)

06 0.8 2
must have a determinant of zero. For M = | 08 —06 —4 |=M"!, M~ ' -l =
0 0 1
0.6 —A 0.8 2
0.8 —0.6—A —4 | and the determinantis (1 — A)[(0.6 — A)(—0.6 — 1) —
0 0 1—-A

0.8)(0.8)]=(1 — A)(A2 — 1). Thus the possibilities are A = 1 (as a double root) and
A = —1. The root A = —1 gives the line of reflection, [%, -1, —2%]. For A = 1, we get

06 0.8 2
[a,b,c]1| 08 —0.6 —4 | =a,b,c], which reduces to a = 2b. This outcome gives
0 0 1

a family of parallel lines [2, 1, c] or, equivalently, y = —2x — c, all perpendicular to
the line of reflection. Note that the double root gives a family of stable lines, whereas
the single root gives just one line. Actually, the fact that A = 1 is a double root for M
ensures that there is a family of fixed points, as we found previously. Problem 7 shows
that the only values of A for any isometry are 1 and —1. In linear algebra the A are called
eigenvalues, and the solutions [a, b, c] are called eigenvectors. @

Find the matrix M representing a rotation of 6 around the point (u, v, 1).

Solution. 'We build the rotation around (u, v, 1) from the translation 7=

(=N
o - O
- R
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M
(u, U, 1) J
-4 i
T R
Figure 4.18
cos® —sinf 0
that moves (0, 0, 1) to (i, v, 1) and the rotation R=| sin® cosé 0 | of & around

0 0 1
(0, 0, 1). In effect we first move the point (u, v, 1) to (0, 0, 1), rotate there, and move
back (Fig. 4.18). That is, we claim that M = TRT™!. We verify that TRT™! fixes
(u, v, 1) and is a direct isometry because its determinant is 1. Hence it is a rotation.
Then we verify that the image of the point (¢ + 1, v, 1) is (u +cos 6, v +sin 6, 1).
Explain why this solution shows the angle of rotation of T R T 'tobed. @

PROBLEMS FOR SECTION 4.3

1. For each matrix, decide whether it is a translation, a
rotation, a mirror reflection, or a glide reflection and
find its fixed points and stable lines.

08 —-06 2 1 0 -2
A=|:0.6 0.8 0:| B=[Ol 7:|

b) Find the matrix of the mirror reflection over the
line y = 2x.

¢) Repeat part (b) for the line y = 2x + 1.

d) Find the matrices of all glide reflections over the

0 0 1 00 1 line y = 2x. , o
cosf —sinf ¢
.08 06 —1/3 RE
C= [0.6 —0.8 1 ] 4. Let M| = [su(l)é) coge {}
0 0 1 " o b
COs sin Fed
08 06 2 . [essdy . ‘
D= [0.6 -0.8 1:| M; = [S"(‘)e ‘3859 {] P = (u, v, 1), and
0 0 1

V2/2 =272 2
E:[ﬁ/z v2/2 o]

2. Repeat Problem 1 for the matrices A- B, B - A,

B-C,and C - D.

3. a) Find the matrix for the rotation of 30° with a
center of rotation of (2, 3, 1).

0 = (s,t,1).Show thatd (P, Q) =d(M P, M, Q) =
d(MyP, MyQ). [Hint: cos*(6) + sin(0) = 1.]
0 0 1 [cos 6 sinf® O }
5. a) Show that | sin® —cosf® O | switches
0 0 1
(1,0, 1) and (cos 6, sin 6, 1). Explain why this
isometry must be the mirror reflection over the
line through the origin that makes an angle of
0 /2 with the x-axis. /
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b) Let M and N be mirror reflections over lines
through the origin. Show that their product in
either order is a rotation around the origin.

¢) In Theorem 4.3.2 let M and N be two general
indirect isometries with the same angle 6. (Thus
the last column of each matrix should have
general variables.) What can you say about their
product? Interpret this conclusion geometrically.

6. Write general matrices M for a rotation of 6 and

N for a rotation of ¢. (Thus the last column of
each matrix should have general variables.) Use
trigonometry to show that MN and NM both
represent rotations of (6 + ¢), unless (6 + ¢) is
a multiple of 360°. What happens in this situation?

7. a) Prove that A = 1 is always an eigenvalue of an

affine matrix.

b) Prove that an indirect isometry has A =1 as a
double eigenvalue and A = —1 as an eigenvalue.

¢) Prove that a matrix representing a direct isometry
satisfies one of the following three situations,
depending on the value of 0: (i) A = 1 is a triple
eigenvalue (0 is a multiple of 360°); (ii) A =1 is
an eigenvalue, and A = —1 is a double eigenvalue
(@ is an odd multiple of 180°); or (iii) A =1
is an eigenvalue, and the other eigenvalues are
complex (all other values of #). Thus the only
possible real eigenvalues of an isometry are A = 1
and A = —1.

8. The central symmetry with respect to A takes a point

P to the point P’, where A is the midpoint of P P’
(Fig. 4.19).

S@®

Figure 4.19

10.

a) Find the matrix for the central symmetry with
respect to (0, 0, 1).

b) Repeat part (a) for (4, v, 1). [Hint: Find the image
of (0,0, 1).]

¢) Verify that the matrix in part (b) has a determinant
of +1 and its square is the identity. Explain what
these algebraic properties mean geometrically.

d) Find the stable lines of the general central
symmetry from part (b).

€) Find the composition of two central symmetries,
one with respect to (u, v, 1) and the other
with respect to (s, t, 1). Identify the type of
isometry for this composition and explain what
is happening geometrically. What happens when
you switch the order?

f) Prove that a central symmetry sends every line to
a line parallel to itself.

g) Prove that an isometry sends every line to a line
parallel to itself iff that isometry is either a central
symmetry or a translation.

h) Show that the set of translations and central
symmetries form a transformation group. [Part
(g) shows these isometries preserve the direction
of a line.]

Let T be the matrix for a translation and M for

an isometry. Explore the idea behind Example 3:

TMT ! represents a transformation essentially the

same as M. (TMT ™! is called the conjugate of M

by T.)

a) If M represents a rotation of m° with any center,
prove that TMT ! is a rotation with the same
angle.

b) If M represents the mirror reflection over the
line k, prove that T MT ™! represents a mirror
reflection by showing that its determinant is —1
and when multiplied by itself it gives the identity.
Explain why these algebraic properties force
TMT " to be a mirror reflection.

¢) What can you say about TMT~! if M is a
translation?

a) Show the set of translations to be a transformation
group.

b) Show the set of rotations fixing (0, 0, 1) to be a
transformation group.

¢) Show the set of rotations fixing a point A to be a
transformation group. [Hint: Use Example 3.]
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d) Show the set of isometries fixing a given point A
to be a transformation group.

e) Show the set of isometries leaving a line stable to
be a transformation group.

f) Show that the indirect isometries are not a
transformation group. Which properties for a

transformation group fail?

11. a) Prove that an invertible matrix M never has A =0

as an eigenvalue.

b) If A 5 0 is an eigenvalue of an affine matrix M,
prove that 1/A is an eigenvalue of M1



