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Transformational Geometry
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Computers store and reproduce intricate shapes such as the fractal
pictured, relying on only a few numbers that somehow encode the
shape. To do so they depend on geometric transformations to represent
such shapes. In addition, computer-aided design (CAD) depends on
transformations to present different views of an object.
Transformational geometry underlies these applications and many
other aspects of mathematics.

131



132 Chapter 4 Transformational Geometry

Geometry is the study of those properties of a set which
are preserved under a group of transformations on that set.
—Felix Klein

A mathematician, like a painter or a poet, is a maker of patterns.
If his patterns are more permanent than theirs, it is because they
are made with ideas. —G. H. Hardy

4.1 OVERVIEW AND HISTORY

Example 1

Moving geometric figures around is an ancient and natural approach to geometry. How-
ever, the Greek emphasis on synthetic geometry and constructions and much later the
development of analytic geometry overshadowed transformational thinking. The study
of polynomials and their roots in the early nineteenth century led to algebraic trans-
formations and abstract groups. At the same time, Augustus Mobius began studying
geometric transformations. In the last third of the nineteenth century, Felix Klein and
Sophus Lie showed the central importance of both groups and transformations for ge-
ometry. This approach enabled Klein and others to unify geometry at a time when new
and different geometries seemed to be splitting this ancient discipline into competing
theories. Transformations remained the dominant approach to geometry for 50 years.
Transformations underlie the modern understanding of symmetry, which is essential in
physics and chemistry, as well as mathematics. (See Chapter 5.) Early in the twentieth
century physicists realized the power of transformations, starting with Einstein’s the-
ory of relativity and then with quantum mechanics. Although many geometric topics
now transcend transformational geometry, this aspect of mathematics remains vital for
understanding geometry.

We first investigate isometries, or the transformations that preserve distance. The
proofs in Sections 4.1 and 4.2 are based on a synthetic approach, although we freely
use coordinates in examples. Then the inclusion of linear algebra enables us to extend
the types of transformations and to work in higher dimensions. Finally we discuss
inversions, which are rich in geometric ideas and have important connections to complex
analysis.

The top and bottom of the shape depicted in Fig. 4.1 are mirror images. Matching
points with their mirror images is one type of transformation, a mirror reflection. If
the mirror is the x-axis, we can describe the transformation, say, u, algebraically by
wu(x, y) = (x, —y). The points on the x-axis remain fixed by u: u(x, 0) = (x, 0). Note
that, if we perform the transformation twice, a point’s image is mapped back to the
original point. That is, u(u(x, y)) = n(x, —y) = (x, y). We say that the entire shape is
stable under u because p maps the shape to itself. @

No amount of turning and twisting can turn a left hand into a right hand, even
though they mirror each other. This condition is caused by the different orientation
of an object and its mirror image. An (asymmetrical) three-dimensional object and
its mirror image can’t be superimposed on each other, even though the object and its

Definition 4.1.1

Exercise 1

Example 2
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Figure 4.1

image are congruent. We particularly notice this change of orientation if we try to read
the mirror image of a book. Rotations do not change orientation. Note that a two-
dimensional mirror reflection, as described in Example 1, can be accomplished by a
three-dimensional rotation of 180° of the entire space around the axis of fixed points. A
two-dimensional mirror reflection switches orientation of points in the plane.

A transformation T on a set S is a function from S to itself that is one-to-one and onto.
That is, (i) [t is a function] for every point P of S there is a unique point Q that is the
image of P under 7 : T(P) = Q, and (ii) [t is one-to-one and onto] for every point Q of
S there is a unique point P for which Q is the image of P under 7. A point P is a fixed
point of the transformation  iff T (P) = P. A subset T of points in § is stable under the
transformation t iff the image of the subset T is again T, even if individual points of T
move to other points in 7. (Stable sets are often called invariant sets.)

The fixed points and stable sets of a transformation tell us important information
about the transformation. For example, in Section 4.2 you will be able to recognize the
type of an isometry by its fixed points and stable lines. Symmetry, the topic of Chapter 5,
involves the study of transformations and their stable sets more deeply. In dynamical
systems, a new field of mathematics, fixed points and stable sets help explain a much
broader family of functions than we present here. (See Abraham and Shaw [1].)

Remark We don’t need to separate the properties of one-to-one and onto here, al-
though the difference is often important in mathematics. (See Gallian [5, 16] for a
discussion of these concepts.)

In Example 1 verify that all vertical lines are stable under n even though individual
points move. Verify that the x-axis also is stable under p. Verify that any other horizontal
line is not stable.

On R? define p(x, y) = (y + 2,2 — x) (Fig. 4.2). Show that p is a transformation. (Later
we see p as a rotation.)

Solution.  Each point (x, y) has a unique image (y + 2,2 — x), so p is a function. To
show one-to-one and onto, we must start with any point (1, v) and show that there is a
unique point (x, y) that p sends to (u, v). When we solveu =y +2andv =2 — x, we
find the solution: (x, y) = (2 — v, u — 2). Because there is only one solution, p is by
definition one-to-one and onto. @
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Exercise 2

Example 3

Example 4

Example 5

Figure 4.2

Verify that p from Example 2 fixes the point (2, 0). Why does p have no other fixed

point? Assume that p is a rotation of 270° around (2,0). W i i
, 0). Why are circles with
(2, 0) stable under p? Does p switch orientation? ] rery

2 .
On R* define ¢ (x, y) = (e*, sin y). Although v is a function, it is neither one-to-one
nor (;nto. No matter what value of x we choose, e* is positive, so ¥ cannot be onto all
of R*. anhemore, the sine function is periodic, so two different points can map to the
same point, demonstrating that v isn’t one-to-one. @

The l?iologist D’Arc_y Thompson used the idea of transformations in his study of com-
parative anatomy. Figure 4.3 reproduces one of his illustrations, depicting how he com-

pared features of related species. The actual transformations he used go beyond the level
of our study. (See Thompson [10].) e

2

Qn R® let p(x,y) = (y +2,2 — x) and u(x, y) = (x, —Y). The composition p o u is
givenby po u(x, y) = p(u(x, y)) = p(x,—y) =(—y+2,2-x)=(2—y,2 — x). We
can show p o i to be a transformation, as in Example 2. e

. Composing functions enables us to build and study a wide variety of functions
in calcu.ll'ls, geometry, and other areas of mathematics. Theorem 4.1.1 shows that the
composition of two transformations on a set is again a transformation on the set. This

Human skull

Chimpanzee skull

Baboon skull

Figure 4.3  Comparing skulls by using transformations that distort
coordinates.
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property is the first of several general properties about transformations that nineteenth
century mathematicians realized were crucial algebraic properties. In later sections we
describe how these algebraic properties enable us to prove geometric properties about
transformations.

For two functions f and g from a set S to itself, the composition of g followed by f,
f o g is defined by f o g(P) = f(g(P)).

If « and B are any two transformations on § then « o B is a transformation on S.

Proof. Leta and B be two transformations on Sand P € S.Fora o $ tobe a function,
there must be a unique R € S such that @ o f(P) = R. Now p is a transformation, so
there is a unique Q € S such that B(P) = Q. Similarly, there is a unique R € S such that
«(Q) = R. Hence R is the unique image of P under o o B.

Let V € S. For a o B to be one-to-one and onto, there must be a unique T € §
such that & o B(T) = V. Because « is a transformation, there is a unique U € S such
that «(U) = V. Similarly, there is a unique T € § such that B(T) = U. This result
implies that T is the only element of § which o o B takes to V. Thus ¢ o B is a
transformation. =

For any set S, define the identity transformation by ((P) = P. For any transformation
o on S, @ ot =a =t oa. The identity may seem of little importance by itself, but its
presence simplifies investigations about transformations, just as the number 0 simplifies
addition of numbers. @

On R?, if we compose p(x,y) = (y +2,2—x) and ¥ (x,y) = 2—y,x —2), then
poy(x,y)=p2—y,x—2)=((x—2)+2,2—(@2—y)) = (x,y). Thus p o yr equals
the identity, ¢: p undoes what ¥ did. @

A transformation f is the inverse of a transformation « iff « o f =cvand poa = 1. We
write o ~! for the inverse of a.

In Example 7, verify that ¥ o p is also the identity. In Example 5, verify that p o u is its
own inverse.

Every transformation  on a set S has a unique inverse, o !, which is a transformation
satisfying ~1(Q) = P iff a(P) = Q.

Proof. Note that parts (i) and (ii) of the definition of a transformation (Defini-
tion 4.1.1) are closely related. This relationship implies that a~!, as given in The-
orem 4.1.2, is a function because o is one-to-one and onto. Similarly, a~ ! is one-
to-one and onto because « is a function. Hence o ~! is a transformation. Verify that
woa—! =1=a"!oa. To show uniqueness, we suppose that 8 also is an inverse of o
and show that 8 =a~!. Let O be any element of S. Because « is a transformation, there
is a unique P such that a(P) = Q. Then B(Q) = P = a~1(Q). As a~! and B agree
everywhere, they are equal. =
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Various sets of transformations correspond to important geometric properties and
also form groups, which are structures of great importance in mathematics. We define
transformation groups because these are the only groups that we consider.

Remark  Associativity plays a key role in group theory, but it always holds for com-
position of functions. Hence we can omit it from the definition. (See Gallian [5,17].)

Definition 4.1.4.
properties obtain.

A set T of transformations on a set S is a transformation group iff the following

i) (closure) The composition of two transformations in T is in T.
ii) (identity) The identity transformation is in T.

iii) (inverses) If a transformation 7 is in T, then the inverse t~! is in T.

Theorem 4.1.3

The set of all transformations on a set is a transformation group.

Proof. See Theorems 4.1.1 and 4.1.2 and Example 6. m

Exercise 4 Verify that . o p does not equal p o  in Example 5.

PROBLEMS FOR SECTION 4.1

1. On R, the real numbers, define a(x) = x> and
B(x)=2x — 1.

a) Show that o and 8 are transformations.
b) Find @ o B and B o «. Show that @ o 8 # S o a.

¢) Find «~! and B~!. Graph « and o ™! together.
Repeat for g and B —!, Describe the relationship
between the graph of a transformation on R and
the graph of its inverse.

d) Find @ ' o 87! and B~ o a~!. Which is the
inverse of a o 87 Verify your answer.

2. For each of the following functions on R?, show on a
graph what it does to various points, show that it is a
transformation, and find its fixed point(s) and stable
line(s).

a) wx,y)=2—x,4-Yy).
b) utx,y)=0¢-1Lx+1).

¢) o(x,y)=(2x,2y).

d) v,y =Gx+1,3y-1).

3. If @ and B are transformations on a set S, prove that
both = o 71 and B! o a~! are transformations.
Which of these two transformations is the inverse of
« o A7 Prove your answer.

4. a) On R? define o by o(x, y) = (342 % - 1).
Find the fixed point of o and call it F.

b) Let Py be any point in R? and define the sequence
{Py, P1, Pp,...} by P,y) =0 (Py,). Graph the
sequence {Py, Py, P,, ...} for several initial
choices of Py. What happens in each case?

¢) Repeat parts (a) and (b) for ¢ (x, y) = 2x + 2,
2y — 4).

d) Repeat parts (a) and (b) for p(x, y) = (3 — y,

x —1).

The study of dynamical systems involves finding

the long-term result of repeated application of a

function. The fixed point of o is called an attracting

(or stable) fixed point because o takes all points

closer to the fixed point. The fixed point of ¢ is

called a repelling (or unstable) fixed point because
¢ sends other points farther from the fixed point.

The transformation p is said to be periodic of

period 4, as four applications of p give the identity.

These terms describe the dynamics of many familiar

transformations. (See Abraham and Shaw [1].)

e) The transformation y(x,y) = (x + 2, —y)
doesn’t fit any of the preceding dynamics.
Describe its long-term dynamics.




