124 Chapter 3 Non-Euclidean Geometries 3.5 Spherical and Single Elliptic Geometries 125

In certain ways, Euclidean geometry is intermediate between spherical and single
elliptic geometries on the one hand and hyperbolic geometry on the other hand. For
example, in Euclidean geometry, the angle sum of a triangle always adds to 180°. As we
know in hyperbolic geometry, the corresponding sum falls short of 180° in proportion

a) dy(A, B)=dy(B,A) >0anddy(A, B) =0iff 10. a) Find the general pattern for the x-coordinates of
A=B. the points P; in Example 2.

b) If B is between A and C on the diameter AC, b) Use part (a) to show that dy(P;, Piy1) =
thendy (A, B) +du(B,C) =du(A, C). dy(Po, P1).

Figure 3.37  In the single elliptic geometry
there is a path from P to Q that does not intersect k. and D.

3.5 SPHERICAL AND SINGLE ELLIPTIC GEOMETRIES

In one sense, mathematicians have studied the geometry of the sphere for millennia
However, before Bernhard Riemann in 1854 no one had thought of spherical geometr);
asa separate geometry, but only as properties of a Euclidean figure. The characteristic
axiom of spherical geometry is that every two lines (great circles) always intersect in
two points. (See Section 1.6.)

To retain the familiar notion of Euclidean and hyperbolic geometries that two points
determine a line, Felix Klein in 1874 saw the need to modify spherical geometry.
The usual way to do so was to identify opposite points on the sphere as the same
point and study this “collapsed” geometry, which Klein called single elliptic geometr};.
Thus the characteristic axiom of single elliptic geometry is that every two distinct lines
intersect in only one point. (Klein called spherical geometry double elliptic geometry
because lines intersect in two points.) Spherical and single elliptic geometries share
many theorems in common, such as the angle sum of a triangle is greater than 180°.
In addition, single elliptic geometry possesses some unusual features worth noting. We
can represent single elliptic geometry as the half of a sphere facing us (Fig. 3.37) so
long as we remember that a line (or curve) that leaves the part facing us immediately
reappears directly opposite because opposite points are identified.

A line in either of these geometries has many of the same properties as a circle in
Euclidean geometry. First, we can’t determine which points are “‘between” two points
because there are two ways to go along a line from one point to another point. Note that
we can use two points to “separate” two other points (Fig. 3.38). Second, the total length
of a line is finite. A single elliptic line has another, more unusual property: It doesn’t
separate the whole geometry into two parts, unlike lines in Euclidean, hyperbolic, and
spherical geometries. Figure 3.37 indicates how to draw a path connecting any two
points not on a given line so that the path does not cross that line.

Figure 3.38 A and B separate C

Exercise 1

to the area of the triangle. In spherical and single elliptic geometries, this sum is always
more than 180° and the excess is proportional to the area of a triangle. (Theorem 1.6.3
shows this condition for Euclidean spheres.) Indeed, in these geometries triangles can
have three obtuse angles, so the sum can approach 540°.

In our development of hyperbolic geometry we assumed that Euclid’s first 28
propositions hold, for they used only Euclid’s first four postulates, but not the fifth pos-
tulate. Many of these propositions, including two of the triangle congruence theorems
(SAS and SSS), continue to hold in spherical and single elliptic geometries. However,
most of the propositions after I-15, including AAS, do not hold in these geometries,
even though they do not depend on the fifth postulate.

Figure 3.39 illustrates Euclid’s approach to showing, as 1-16 states, that in any
triangle an exterior angle, such as /BCD, is larger than either of the other two interior
angles, /ABC and /BAC. From the midpoint E of BC, Euclid extended AE to F
so that EF =~ EA. Then by SAS AECF = AEBA. He then concluded that /BCD is
larger than / EC F, which is congruent to the interior angle /E B A. Figure 3.39 supports
this conclusion, but the similar situation shown in Fig. 3.40 for single elliptic geometry
reveals that the conclusion depends on implicit assumptions. In Fig. 3.40, the part of
AE that looks like segment AE covers more than half the length of the line. Hence the
corresponding part of EF overlaps this apparent segment. Euclid implicitly assumed
that lines extend infinitely in each direction. Postulate 2 only says, “to produce a finite
straight line continuously in a straight line.” The overlapping “‘segments” AE and EF
in Fig. 3.40 satisfy the letter and, within reason, the spirit of postulate 2. Nevertheless,
I-16 is false here because ZBC D can be smaller than ZECF.

Draw the figure in spherical geometry corresponding to the situation depicted in
Fig. 3.40.

2 For SAS to hold we need to assume that a side is the shortest part of a geodesic.
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Figure 3.39  Euclid’s diagram for proposition 1-16.

Figure 3.40  The diagram from Fig. 3.39
in single elliptic geometry.
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Exercise 3

Theorem 3.5.1

v

Non-Euclidean Geometries

We partially develop single elliptic i i

geometry as we did hyperbolic geometry. (Fo
a more Fhorough deve.lopment, see Gans [5].) Theorems 3.2.1-3.2.8 do not r[gat(e t;
geometr.les where all lines intersect. Therefore we start with Theorem 3.3.1 concernin
Saccheri quadrilaterals, which we repeat here. . :

The surr}mit angles of a Saccheri quadrilateral are congruent. The base and summit are
perpendicular to the line on their midpoints.

Verify that the proof of Theorem 3.3.1 holds in spherical and single elliptic geometry.

Ir} hyperbolic geometry, Theorem 3.3.2 showed that the summit angles of a Saccheri
quad.nlateral were acute. Theorem 3.5.2 shows they are now obtuse. Theorem 3.5.1
provides a key step to this end. -

al g
al g

In single elliptic geometry, all lines perpendicular to a given line intersect in one point.

Proof.  From Theorem 3.3.1 we know that, in Saccheri quadrilateral ABCD, EF
is perpendicular to both AB and C'D. By the characteristic property of single elliptic
geometry, AB and C D intersect in a unique point, say, P.

Claim. d(A, P)=d(B, P)andd(C, P)=d(D, P).(In amodel, the distance is along
the §hortest path. As shown in Fig. 3.41, the shortest path from B to P goes “around
behind” because we can “jump” from the gﬂht edge to the left edge.)

For a contradiction, construct P’ on AB so that AP =~ BP’ and P and B separate
A and P'. (Intuitively P’ is on the “other” side of B, as depicted in Fig. 3.41.) Then
AADP = ABCP' by SAS. Thus ZBC(P_’,_)which is congruent to ZADP,‘is .supple-
rgentary to Z.BCD..Then by Euclid{l—_}l 4,C P"_i_s} the same line as C D. This result would
give two points of intersection of AB with C D, which is a contradiction. So P’ = P,

Figure 3.41

Theorem 3.5.2
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showing that d(A, P) = d(B, P) and d(C, P) = d(D, P). Furthermore, the distance
from E to P is the same by way of A as by way of B, which is the maximum dis-
tance two points can be separated. The same holds for the distance from F to P, and
d(E, P)=d(F, P)by Euclid I-6, for isosceles triangles. Moreover, note that d(E, P)
and d(F, P) do not depend on the length of EF. That is, common perpendiculars are
always the same length and intersect in the same point. ™

In single elliptic geometry, the summit angles of a Saccheri quadrilateral are obtuse.

Proof. In Saccheri quac}fﬂ?teral MC D construct 55 perpendicular to AD and let
Q be the intersection of DG and AB (Fig. 3.42). Then distance d(A, P) is less than
or equal to d(A, Q) because Q is the point furthest from A by Theorem 3.5.1. If
these distances were equal, P = Q, implying ttﬁA — E and giving a trivial Saccheri
quadrilateral. Hence d(A, P) <d(A, Q). Thus DP enters AQDA at D, and so /PDA
must be smaller than ZQ D A, which is a right angle. Hence /ADC, a summit angle and
supplementary to /P DA, is obtuse. m

Once we have Theorem 3.5.2, the development of single elliptic geometry follows
the lines of hyperbolic geometry. (See Project 5.)

Single elliptic geometry has another property worth discussing. Consider what
happens to an asymmetrical object in single elliptic geometry as it moves along the
path of a line (Fig. 3.43). This object actually has two opposite representations, as the
“front” one slides out of view, it is “replaced” by the “rear’” one, which is fundamentally
different. The rear representation won’t match the front representation because it has
an opposite orientation. That is, these two representations are mirror images. No matter
how you twist and turn two objects with opposite orientations in Euclidean geometry, as
long as you stay in the plane, you cannot make them coincide. In single elliptic geometry
these representations are the same, so we have the curious property that simply moving
an object around in this geometry can switch its orientation. Single elliptic geometry
is topologically a nonorientable surface, whereas spherical, Euclidean, and hyperbolic
geometries are orientable. On a nonorientable surface there is no consistent way to
define a clockwise direction.

Figure 3.43  Single elliptic geometry
is not orientable.

Figure 3.42
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Write an essay comparing how models and synthetic

9, Investigate the historical development of non- i
i i i ; i . (See Bonola [1], Kline [6 development have helped you understand hyperbolic
1. Call a triangle with two right angles a doubl . ' Eiiolidsan geowelry. { . ’ : e .
trflanf;lemmg i L . ::gxg:yl Do SHEEE Ry, et S e pbeal Chapter 36] and Richards [9].) geometry. Discuss how convincing the proofs in
, . : : : hyperbolic geometry are to you.

a) Prove in single elliptic geometry that two 4. Prove Theorem 3.5.2 in spherical geometry. 10. Investigate other non-Euclidean geometries. (See yg v di Y . );] diff betw
doubly right triangles are congruent if their sides 8, Do Broblem, | in spliical geomiets Yaglom [14].) 15. \‘Nnte. an essay discussing the : erencelre ; :gn
between the right angles are congruent. & Y- 11. Investigate the concept of space. (See, for example, spherical geometry as a separate geomelry :

T~ e 6. Assume the analog to Theorem 3.4.5 in single elliptic Rucker [10] and Weeks [13].) the geometry of the sphere as a part of Euclidean

b) Prove in single elliptic geometry that two doubly and spherical geometries: Th fostrianale ; He ) geometry.
right triangles are congruent if their third angles ; & ALTEATO NIRRT I 12. Investigate curvature and differential geometry. (See : ' ) )

proportional to the excess of the angle sum of a 16. Write an essay discussing whether you think that
s triangle over 180°. Each of the three angles of a plsCleasy [71. mathematics was discovered or invented. Use your
. Euclid I-26 has two congruence theorems: AAS and triangle must have a measure of less than 180°. 13. Write an essay comparing Euclidean and hyperbolic understanding of non-Euclidean geometries as an

ASA.

a) Explain why Theorem 3.5.1 shows that AAS
is not a triangle congruence theorem in single
elliptic and spherical geometries.

b) Prove that ASA is a triangle congruence theorem
in single elliptic and spherical geometries, using
SAS and a proof by contradiction.

a) What would be the “triangle” if all three angles
had a measure of 180°? What would be the area
of this “triangle” if the sphere has radius r?

b) Explain why the proof of Theorem 1.6.3 isn’t suf-
ficient to establish the analog to Theorem 3.4.5.

geometry. Address your essay to someone at the
level of calculus.
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example. (See, for example, Kline [6, 1032-1038].)
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2. Use appropriate software (for example, Geometer’s

Sketchpad or CABRI) to create the Poincaré model
of hyperbolic geometry. Investigate how the angle

polyhedra and regular patterns in Euclidean and
hyperbolic geometries?

. Investigate ultraparallel lines in hyperbolic geome-

try. (Cederberg [2] proves that any two ultraparallel
lines have a common perpendicular.)

. Investigate limiting curves or horocycles, the points

at a constant distance from a hyperbolic line. These
sets act like circles of infinite radius. (See Smart
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