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essence, Theorem 3.3.1, in his attempt to prove Euclid’s fifth postulate. Saccheri is be-
lieved to have built on Khayyam’s work.

Definition 3.3.1 A Saccheri quadrilateral has two opposite congruent sides perpendicular to one of the
other sides. The common perpendicular is the base, and its opposite side is the summit.

Theorem 3.3.1 The summit angles of a Saccheri quadrilateral are congruent. The base and summit are
perpendicular to the line on their midpoints.

Proof. Let AB be the base of Saccheri quadrilateral ABCD and AC and BD the
diagonals (Fig. 3.16). Then AABC = ABAD by SAS, and by SSS AADC = ABCD.
Then the summit angles, /ADC and /BC D, are congruent. For the second statement
of the theorem, let E and F be the midpoints of AB and CD (Fig. 3.17). Draw DE
and CE. Then ADAE = ACBE by SAS, and ADEF = ACEF by SSS. Hence
/DFE = /(CFE,so EF L CD. Similarly, EF 1. AB. m

Theorem 3.3.2 The summit angles of a Saccheri quadrilateral are acute.

Proof. On Sacche(ri) quadrilateral ABC D with base AB, let C&‘—é and B_Si be left-
sensed parallels to AB (Fig. 3.18). By Theorem 3.2.6, the exterior angle ZEDS of
omega triangle ADCS is larger than /DCS2. Theorem 3.2.7 implies that the angles
of parallelism /ADS and /BCS are congruent. Hence /E DA is larger than /DCB.
The summit angles are congruent, so ZE DA is bigger than /CDA. These two angles
form a straight line, so the smaller, a summit angle, must be acute. =
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3.3 SACCHERI QUADRILATERALS AND TRIANGLES
Q
We now turn from unbounded sensed parallels and omega triangles to bounded re- A “B

gions, including the quadrilaterals that Saccheri used in his investigations. The Arab
mathematician Omar Khayyam (circa 1050-1130) developed this quadrilateral and, in Figure 3.18
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A direct consequence of Theorem 3.3.2 is that the angle sum of a Saccheri quadri-
lateral is always less than 360°. We convert this fact to the corresponding fact about
triangles in Theorem 3.3.3 by dissecting a triangle to form a Saccheri quadrilateral (Fig.
3.19). Then we show that the sum of the measures of the summit angles of the Saccheri
quadrilateral equals the angle sum of the triangle.

The angle sum of any triangle is less than 180°.

Proof. In any triangle AABC, let D be the midpoint of AB and E be the midpoint of
AC. Construct the perpendiculars AF, BG, and CH to DE

Claim. Either D is between F and G or D = F = G. (See Problem 3.) This claim
implies that the construction looks like that shown in Fig. 3.19, 3.20, or 3.21.

Cases 1 and 2 These cases correspond to Figs. 3.19 and 3.20. (See Problem 4.)

Case 3 Let D lie between F and the other points G, E, and H on this line (Fig. 3.21).
In AAFD and ABGD, we know that AD = BD, /AFD = /BGD, and LADF =
/BDG.Hence,by AAS, AAFD = ABGD. Similarly, AAFE = ACH E. Then BGZ
AF =~ CH, which shows that GHCB is a Saccheri quadrilateral. Thus both summit
angles, /CBG and /BCH, are acute. Finally we need to show that the angle sum of
the triangle equals the sum of the measures of these two summit angles. Following the
labeling in Fig. 3.21, we have

m/ABC +m/./BAC +m/ACB
=ml24+m/l+mld+m/S=m2+mi3+mld+m/5=m/2+m/l6+m/5
=m/.GBC+m/.HCB. =

If we dissect a Euclidean triangle as in Theorem 3.3.3, what type of quadrilateral results?
Is it a Saccheri quadrilateral?

Exercise 2

Corollary 3.3.1

Theorem 3.3.4
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Figure 3.21

Explain why the argument in the preceding proof wouldn’t show that for Euclidean
triangles the sum of the measures of their angles is less than 180°.

The angle sum of a quadrilateral is less than 360°.

Proof. In any quadrilateral ABC D draw BD. If ABCD is the union of AABD and
ACBD, we can use Theorem 3.3.3 twice. Otherwise, A and C are on the same side
of BD. The definition of a polygon (Problem 4 of Section 1.2) implies that A is in the
interior of AC BD or that C is in the interior of AAB D. Either way ABC D is the union
of AABC and AADC. Now use Theorem 3.3.3 twice. In Problem 5 you are asked to
fill out this argument. m

The next theorem shows that the powerful Euclidean notion of similar triangles
plays no role in hyperbolic geometry. In hyperbolic geometry similar triangles are
always congruent. Indeed, as Saccheri noted, the existence of noncongruent but similar
triangles is equivalent to Playfair’s axiom.

If two triangles have corresponding angles congruent, then the triangles are congruent.

Proof. Let AABC and AA’B’C’ have corresponding angles congruent (Fig. 3.22).
If one pair of corresponding sides is congruent, then by ASA the triangles would be
congruent. For a contradiction, assume WLOG that AB is longer than A’B’. Construct
D between A and B such that AD = A’B’ and construct E on the ray AC so that
AE = A'C’. Then by SAS, AADE = AA’B'C’, which gives the two cases shown in
Fig. 3.23 to consider. In Problem 6 you are asked to derive a contradiction in each case.
These contradictions show that AB cannot be longer than A’B’, and so the triangles are
congruent. ®
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PROBLEMS FOR SECTION 3.3

1.

Use the unit circle for the Poincaré model and
construct a Saccheri quadrilateral as follows. Let
the base be on y =0, the two sides be on [x :i:
(5/3)12 + y? = (4/3)? and the summit be on x2 +
[y — (5/3)1% = (4/3)%. Graph these four hyperbolic
lines. Explain why the two sides are perpendicular to
the base. Why can you reasonably expect the sides to
be congruent? Verify visually that the summit angles
are acute.

. a) Prove that the supposition in Problem 7 of

Secllon 3.2 is correct. [Hint: Consider X on
DC such that ABDX is a Saccheri quadrilateral.
Use Theorem 3.3.2.]

b) Explain why the supposition you showed in
part (a) implies, as Saccheri proved, that sensed
parallels approach one another.

. (Proof of the claim in Theorem 3.3.3.) If D, F, and

G are the same point or D is between F and G,
the claim holds. Suppose, for a contradiction, some
other situation occurs. That is, either D coincides
with just one of the other points or that ¥ and G are
both on the same side of D. Find a contradiction for
each of these options. [Hint: Use Euclid I-16 for the
second option.]

. Prove the first two cases of Theorem 3.3.3, based on

Figs. 3.19 and 3.20.

. Illustrate and complete the proof of Corollary

3.3,
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Figure 3.23

. a) Finish the proof of Theorem 3.3.4. [Hint: Use

Corollary 3.3.1 and Euclid 1-16.]

b) Explain why part (a) doesn’t apply in Euclidean
geometry.

. As shown in Fig. 3.24, AABC and AABD have

angle sums less than 180°. Which triangle, if any,
has the larger sum? Prove your answer.
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Figure 3.24

. Generalize Corollary 3.3.1 to convex polygons

with n sides. Prove your generalization by using
induction. Does this generalization hold if the
polygon isn’t convex? Explain.

. In Section 3.4 we will define the defect of a triangle

to be the difference between 180° and the angle sum
of the triangle. Prove that the defects of triangles are
additive in the following sense. If S lies between Q
and R in AP QR, show that the defect of APQOR

equals the sum of the defects of AP QS and APSR.

3.4 AREA AND HYPERBOLIC DESIGNS

Areas in hyperbolic geometry do not have easily remembered formulas, such as A=
lbh for a Euclidean triangle. In place of that, Theorem 3.4.5 asserts that the area of a
mangle is proportional to the defect of the triangle, or the amount by which its angle




