3.2 PROPERTIES OF LINES AND OMEGA TRIANGLES

We develop hyperbolic geometry following the path of Saccheri, Gauss, Lobachevsky,
and Bolyai, but adding the foundation of Hilbert and others. We can thus accentuate the
geometric intuition of earlier work while having the logical basis required to avoid the
flaws discovered later.

Our undefined terms are point, line, on, between, and congruent. Our axioms are
Hilbert’s axioms for plane geometry (see Appendix B), with the exception of axiom
IV-1; Playfair’s axiom, which we replace with the characteristic axiom of hyperbolic
geometry. (See Section 3.1.) We also avail ourselves of Euclid’s first 28 propositions, or
those he proved without using the parallel postulate. (See Appendix A.) These proposi-
tions give us many of the key properties about lines and triangles, which we need in our
development of hyperbolic geometry. They are provable in Hilbert’s axiomatic system
without our having to use either axiom IV-1 or the characteristic axiom.

Like the developers of hyperbolic geometry, we prove many theorems in this chap-
ter, including Theorem 3.2.1, by contradiction. Until 1868, when Beltrami built the
first model of hyperbolic geometry, mathematicians wondered whether the characteris-
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tic axiom itself was potentially a contradiction. A rigorous proof of even Theorem 3.2.1
requires considerable development from Hilbert’s axioms. For example, in Fig. 3.8 we
would need to show that B can always be chosen so that the line m enters AABP at
P. (By enter we mean that the line has P and another point inside of the triangle on
it. (See Moise [8, Chapter 24] for a careful development of these basics, including the
justification of right- and left-sensed parallels in Definition 3.2.1)

Given a point P not on a line k, there are infinitely many lines on P that have no points
also on k.

Proof. Let the two lines indicated by the characteristic axiom be [ and m. Pick points
A on k and B and C on/ such that line m enters AABC at P. By Pasch’s axiom, m must
also intersect the trlangle on anolher side, WLOG at D on AB. Now, for every point X
on the segment B D, we can draw PX. (See Fig. 3.8.)

Claim. PX does not intersect k. Suppose, for a contradiction, that PX and k had
the point Y in common. Then line m would enter triangle AXY A at D, and by Pasch’s
axiom m would have to intersect the triangle again on XY oronY A. However, m already
intersects PX al P, eliminating X Y. Furthermore Y A is part of k, which has no pomw
common with m, which is a contradiction. Hence each of the infinitely many lines P X
has no point in common with k. m .

For the same k and P as in the preceding proof, the lines through P split into two
categones those that mtersecl k and those that do not. In Fig. 3.8, for Z on segment
AD, some of the lines PZ such as PA intersect k, but others such as PD don’t. By
the continuity of a line, some point W must separate these lines. Does PW intersect
k? Draw a figure illustrating the following argument by contradiction showing that PW
cannot intersect k. If T is the supposed 1ntersect|on of PW and k, consider any point S
M with T between A and S. Now draw PS which clearly intersects k at S. Therefore
PW would not be the last line, contradicting the assumption about W. Explain why a
similar situation occurs on the left side of Fig. 3.8.

Given a point P not on line k, the first line on P in each direction that does not intersect
k is the (right- or lefi-) sensed parallel to k at P. Other lines on P that do not intersect k
are called ultraparallel to k. Let A be on k with AP L k. Call the smaller of the angles

Figure 3.8
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a sensed parallel makes with AP the angle of parallelism at P. (If the angles are equal,
either is the angle of parallelism.)

One goal of this section is to show that the angle of parallelism depends only on the
length of segment AP.

If  and m are the two sensed parallels to k at P, they have the same angle of parallelism.

Proof.  As shown in Fig. 3.9,let AP | k and P B and PC be the sensed parallels to k
at P. For a contradiction, let the angles of parallelism differ, say, m/APB <m/APC.
g_ggstruct inside /APC anewangle /APD~ /APB. Because 7’?‘ is a sensed parallel,
P D intersects k, say, at E, giving a triangle AAPE. Let F be on k with AF = AE. Then
AAI(';F’; AAPE by SAS (Euclid I-4). But /APF = /AP B, which means that P F
and P B are the same line by Hilbert’s axiom I111-4. However, PB is a sensed parallel to
k, so it cannot intersect k at F, which is a contradiction. Hence the angles of parallelism
must be the same. =

All angles of parallelism are less than a right angle. Two lines with a common perpen-
dicular are ultraparallel.

Proof. See Problem2. m

Let P be a point not on k and let m be a sensed parallel to k at P. If S is any other point
on m, then m also is a sensed parallel to k at S.

Proof. 'WLOG, let m be a right-sensed parallel to k at P.

Case 1  Suppose that S is on m to the left of P. Because m and k do not intersect, m is
either the right-sensed parallel to k at S or m is ultraparallel to & at S. For a contradiction,
suppose that /, not m, is the right sensed parallel to & at | S. As shown in Fig. 3.10, pick
T on [ and on the opposite side of m from k. Then T P crosses m at P. As m is the
right-sensed parallel to k at P, TP must intersect k, say, at A. Then SA lies below /
because [ is a right-sensed parallel. Let U be on m with S between P and U. Then U A
is below SA. Now / enters AUPB at S and, by Pasch’s axiom, / would need to intersect either
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UB or PB. Iflintersects UB, it can't be right sensed parallel to £, a contradiction. But if / intersects

PB, it enters APBA on that side. By Pasch’s axiom, either I intersects B4, which is k, or it
intersects PA. However, / already intersecied P4 at 7, so that is impossible. Finally, if /
intersects £, it isn't right sensed parallel. Hence m is the right-sensed parallel to & at S.

Case 2 Let S be on m to the right of P. (See Problen_l 3) =®

3.2.1 Omega triangles

Definition 3.2.2

In both the Klein and Poincaré models of hyperbolic geometry (Fig. 3.11) sensed paral-
lels “meet” on the circular boundary. Following the historical development, we say that
sensed parallels meet at imaginary points called omega points. Although the originators
of hyperbolic geometry didn’t have any models, they benefited greatly from thinking of
sensed parallels “meeting at infinity.” In particular, they used omega triangles, which
have one omega point, to prove theorems about ordinary triangles. They first showed,
as do we here, that omega triangles share some key properties with regular triangles.
In the Klein and Poincaré models, omega triangles (Definition 3.2.2) are triangles with
one vertex on the boundary. These models also suggest Theorem 3.2.4, which we accept
without proof. (For a proof, see Moise [8, 321-322].)

All lines right- (left-) sensed parallel to a given line are said to have the same right (left)
omega point. An omega triangle AABQ c92§isls of_t\yo (ordinary) points A and B, the
segment AB, and the sensed parallel rays AS2 and BS2.

N\
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Figure 3.11  Sensed parallels in the Klein and Poincaré models.
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If m is sensed parallel to k, then k is sensed parallel to m. If m is sensed parallel to [ and

! is sensed parallel to k with the same omega point, then m is sensed parallel to k with
the same omega point.

Draw an omega triangle for the Klein model.

Modified Pasch’s Axiom for Omega Triangles If a line k contains a point interior
to AABS2 and k is on one of the vertices, then k intersects the opposite side of AABQ.

Proof. Let C be i in AABR, and draw line AC (Flg 3.12). Because AQ 2 15 the sensed
parallel to BS at A, for k = AC k intersects BQ say, at D. The line BC is handled
similarly. We can extend this theorem by treating 2 as a L vertex. The line C$2 enters the
ordinary tnallglcg AABD at C, and by Pasch’s axiom CS2 must intersect AB or BD.
However if CQ mtersected BD, there would be two sensed parallels to A at that
point: BS and CS2. So C intersects AB. m

Euclid I-16 for Omega Triangles The measure of an exterior angle of an omega
triangle is greater than the measure of the opposite interior angle.

Proof. Let AABS2 be an omega triangle and extend A B (Fig. 3.13). We prove ZCAQ
to be greater than ZABS2 by showing that the other two possibilities lead to contra-
dictions. For case 1, let m/CAQ2 <m/ABS2. Construct /ABZ inside /ABQ with

Figure 3.13 Case 1 of Theorem 3.2.6.
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Figure 3.14  Case 2 of Theorem 3.2.6.

[ABZ = /CAQ. Then 237 intersects 1—4?2 say, at D because E?Z is the sensed par-
allel to AS2 at B. But then ZC A2 is an exterior angle to an ordinary triangle, AABD,
with an opposite interior angle /ABD = /CAQ. This result contradicts Euclid I-16.

For case 2 (Fig. 3.14), we try to set ZCASZ =~ /ABS. If we let E be the midpoint
of AB, we can draw the perpendicular DE to AQ. (The angle of parallelism is acute,
so D is not A.) Construct F on BS so that FBE = AD and F and D are on opposite
sides of AB. Note that ZFBE = /DAE by our extra assumption in this case. So by
SAS AFBE = ADAE. Then the angles at E are vertical angles, ensuring that D, E,
and F are on the same line, by Euclid I-14. Because LADE is aright angle, /BFE
is also. But then the angle of parallelism for FS to DS2 would be a right angle, which
is a contradiction. Hence the assumption that /CAQ = /ABSQ must be wrong. Both
alternatives are impossible, proving the theorem. =

We can extend Euclid’s concept of congruent triangles to omega triangles. However,
the lengths of two of the “sides” of an omega triangle are infinite, and we can hardly
measure the imaginary angle “at” the omega point. Hence there are only two angles
and the included side to consider in each omega triangle. We show that if two omega
triangles have two of these three parts congruent, they have their third parts congruent.
In this case we define the omega triangles to be congruent.

In omega triangles AABS: and ACDA, if AB=CD and /ABQ = /CDA, then
AABQ = ACDA.

Illustrate the proof of Theorem 3.2.7.

Proof. For a contradiction, assume that /BAS is not congruent to ZDCA, and so
WLOG /DCA has a smaller measure. Construct ZBA P inside /BASQ2 with /BAP =
LDCA. Then AP intersects BS2, say, at E. From the ordinary triangle AABE we
construct a congruent one in the other omega triangle. Let F be the point on DA
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with DF =~ BE. Then ADFC = ABEA by SAS(_._})lowever, this outcome means that
/DCF =~ /BAE = /DCA, which implies that CA would intersect DA, which is a
contradiction. Hence the two angles, and so the two omega triangles, are congruent. m

Theorem 3.2.8 If corresponding angles of omega triangles are congruent, then the omega triangles are
congruent.

Proof. See Problem8. m

If /ABS2 is a right angle in omega triangle AABS2, then /BAS is the angle of
parallelism. Theorem 3.2.7 implies that the size of this angle depends only on the length
AB. Conversely, if we know the angle of parallelism, Theorem 3.2.8 says that only one
length has that angle of parallelism. A comparison with Euclidean geometry reveals the
oddity of. this situation. In Euclidean geometry the angles of a shape tell us nothing
about the size of the shape. In particular, similar shapes have the same angles but are
of different sizes. In hyperbolic geometry, the angles of shapes determine their size:
In both geometries we can measure angles absolutely by comparing them with a right
angle. However, Theorem 3.2.8 says that in hyperbolic geometry we can, in principle,
measure lengths in an absolute way by using the angle of parallelism.

PROBLEMS FOR SECTION 3.2

1. Suppose that m is a left-sensed parallel to k and / is compare 360° with the angle sum of the quadrilateral
a right-sensed parallel to k. Use the Klein model to ABCD.
determine whether m and [ can (a) intersect, (b) be
sensed parallel, or (c) be ultraparallel.

2. Prove Corollary 3.2.1. A
3. Prove case 2 of Theorem 3.2.3 [Hint: Pick T on [
between m and k.] C
4. Relate Euclid I-27 and I-28 to Corollary 3.2.1. \ Q
5. Prove Pasch’s axiom (Hilbert 1I-4) for omega . B D
triangles.
6. Suppose that AC L CS2, B is between A and C and Figure 3.15

that AS2, (B—fz and CS? are all right-sensed parallels.
Theorem 3.2.8 implies that the angles of parallelism 8. Prove Theorem 3.2.8.

for AACS and ABCS2 cannot be equal. Which is 9. If M is the midpoint of AB in AABS, prove that

larger? Prove your answer. /A= /Biff /AMS is aright angle.

7. Let Xgﬁﬂd BD be sensed parallels, AB L BDa_nd_ 10. In omega triangles AABS2 and ACDA,If /A= /B,
CD L BD. Suppose, as Fig. 3.15 suggests, that CD /C=/D, and AB = CD, prove that AABQ =
is shorter than A B. Use your answer to Problem 6 to ACDA.

3.3 SACCHERI QUADRILATERALS AND TRIANGLES

We now turn from unbounded sensed parallels and omega triangles to bounded re-
gions, including the quadrilaterals that Saccheri used in his investigations. The Arab
mathematician Omar Khayyam (circa 1050-1130) developed this quadrilateral and, in




