3

Non-Fuclidean Geometries

The repeated insects in this design clearly follow some rule, although
the geometry behind this pattern may seem mysterious. Douglas
Dunham, a geometer with an interest in computer graphics, has

combined his knowledge of non-Euclidean geometries and computers

to produce a large variety of such designs. The fundamentals of non-
Euclidean geometries are basic to an understanding of the
mathematics of these designs.
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The most suggestive and notable achievement of the last century
is the discovery of non-Euclidean geometry. —David Hilbert

To this interpretation of geometry I attach great importance for
should I have not been acquainted with it, I never would have
been able to develop the theory of relativity. —Albert Einstein

3.1 OVERVIEW AND HISTORY

The classical understanding of axioms (postulates) as “self-evident truths” was shattered
in mathematics by the introduction and development of non-Euclidean geometries dur-
ing the nineteenth century. The story of non-Euclidean geometries plays an important
role in the history of ideas, and mathematics students deserve to know it. In addition,
non-Euclidean geometries illustrate the need to transcend the intuitive models of ele-
mentary mathematics, allowing us to think successfully about the much more abstract
concepts of modern mathematics.

In this chapter we focus primarily on the specific non-Euclidean geometry now
called hyperbolic geometry. This focus provides an in-depth look at an axiomatic Sys-
tem. In the final section of this chapter we consider two other non-Euclidean geometries:
spherical and single elliptic geometries.

Until the nineteenth century, no one questioned the truth of Euclidean geometry,
although many sought to remove a perceived blemish in Euclid’s masterpiece. His fifth
postulate about parallels was hardly a “self-evident truth.” (See Section 1.2.) Mathemati-
cians tried repeatedly to prove this postulate from the others. For the most part, though,
they either explicitly or implicitly used equivalent assumptions, such as Playfair’s,
which is now used in geometry books. (Recall that Playfair’s axiom states: “Through
a given point not on a given line m there passes at most one line which does not inter-
sect m.”) Before 1800, the person who came closest to realizing that the fifth postulate
could not be proved from the others was the Italian mathematician Girolamo Saccheri
(1667-1733). His approach was to start from two negations of the fifth postulate and
look for a contradiction. From one he found the desired contradiction. From the one
leading to hyperbolic geometry he deduced increasingly bizarre consequences, such as
the angle sum of a triangle is less than 180° and the existence of straight lines that ap-
proach each other but never cross. However, he found no explicit contradiction. Finally,
he concluded that “the hypothesis . . . is absolutely false, because it is repugnant to the
nature of the straight line.” Bonola [1,43] Saccheri could receive credit for logically de-
veloping a non-Euclidean geometry, but he could as easily be seen as remaining inside
the world view of asserting Euclidean geometry to be true and to be the geometry of the
physical world.

That world view, accepted for centuries, found even more support in the 1700s.

First, Immanuel Kant (1724-1804), the most influential philosopher of the time, held
that the truths of mathematics differed fundamentally from incidental facts about the
world, such as the earth has one moon. Mathematics, Kant taught, was a priori true—
necessarily true, even before any particular experience we have. Geometry, as developed
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by Euclid, seemed a compelling example of how humans could obtain absolute knowl-
edge about the world. In addition Kant argued that we needed an essentially inborn
understanding of geometry and space before we could experience anything in space.I
He thought that geometry had to be Euclidean.

In the eighteenth century, the Age of Enlightenment, mathematicians and philoso-
phers built on the perceived absolute truth of mathematics in a second way. The astound-
ing success of Newton’s calculus and physics convinced his successors that mathematics
wasn’t just true in some metaphysical sense, but also in a tangible sense. The ideal world
of mathematics, it seemed, was the real world. The physical meaning of much of the
mathematics developed in the eighteenth century was so convincing that the rigorous
deductive methods of Greek geometry seemed superfluous. The shock of the radically
different mathematical results of the nineteenth century, starting with non-Euclidean
geometries, forced mathematicians to reintroduce careful proofs.

The first person to break from the world view of Euclidean geometry, its unques-
tionable truth, and applicability to the physical world was Carl Friedrich Gauss (1777-
1855). Despite his fame, Gauss never published anything on non-Euclidean geometries
because he feared ridicule. Nicolai Lobachevsky (1793-1856) and Janos Bolyai (1802-
1860), the two young mathematicians who did publish on non-Euclidean geometry,
were greeted with silence for years after their publications in 1829 and 1832, respec-
tively. Indeed, only with the publication of Gauss’s notes after his death did the wider
community of mathematicians start investigating non-Euclidean geometries.

3.1.1 The advent of hyperbolic geometry

Hyperbolic geometry, the non-Euclidean geometry that Gauss, Lobachevsky, and Bolyai
developed, retains Euclid’s first four postulates and changes the fifth postulate to the fol-
lowing axiom. In Sections 3.2, 3.3, and 3.4, we investigate hyperbolic geometry in much
the same way that these mathematicians did. However, to make the process clearer, we
make explicit certain logically necessary assumptions that had been overlooked until
the end of the nineteenth century. (See Section 1.3.) Hyperbolic geometry is sometimes
called Lobachevskian geometry to honor Lobachevsky’s priority in publishing. Felix
Klein called this geometry hyperbolic in his classification of geometries, which we dis-
cuss in Section 6.5.

Characteristic Axiom of Hyperbolic Geometry Given any line k and any point P
not on k, there are at least two lines on P which do not intersect k (Fig. 3.1).

Various consequences follow from this change, including the many that Saccheri
found. The most startling is the theorem that the measures of the angles of a triangle
do not add up to 180°, as they do in Euclidean geometry. The goal in our study of
hyperbolic geometry, Theorem 3.1.1, goes even further, relating the angle sum to the
area of the triangle (Fig. 3.2). The greater the area of the trianglé is, the smaller the
angle sum is. Consequently, any triangle has a maximum area. As the sides of triangles
can become indefinitely long, this consequence seems paradoxical.

I Studies of blind people and people with recovered sight indicate that Kant’s argument is incorrect; sight is
essential to developing the usual conception of space. (See Sacks [11, 124].)
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NIKOLAI LOBACHEVSKY AND JANOS BOLYAI

Nikolai Lobachevsky (1793-1856) was a mathematics professor at the University of Kazan
in Russia, where he first published on hyperbolic geometry in 1829. His extensive
development included its trigonometry, corresponding to the trigonometry on a
sphere of imaginary radius. He thought that this geometry might be pertinent to the
study of astronomy because he realized that, as distances increased, the difference
between Euclidean geometry and hyperbolic geometry became more noticeable. In his
publigations, Lobachevsky expounded on this geometry.

Janos Bolyai (1802-1860) was a Hungarian army officer with a reputation for dueling.
One day he reportedly dueled several officers, playing his violin between duels. Bolyai
found basically the same results as Lobachevsky. His publication of 1832, The Science of
Absolute Space, also reported his investigation of properties common to both Euclidean
and hyperbolic geometries.

The fame of Lobachevsky and Bolyai rests entirely on their work in hyperbolic
geometry. Surprisingly the wider mathematical community neglected their publications
which deeply disappointed both men. Certainly, the original languages of Russian '
and Hungarian deterred readers. However, in 1840 Lobachevsky published a book
on his research in German, then the foremost language of mathematics. Perhaps
more significantly, geometric research focused then on projective geometry, which
does not study parallel lines. Also, the trigonometric formulations may have impeded
mathematicians interested in philosophical and geometric implications. Only after the
posthumous publication of Gauss's notebooks in 1855 did an active study of non-
Euclidean geometry begin. Because of the number of distinguished mathematicians who
had failed to prove Euclid’s fifth postulate, Lobachevsky and Bolyai should have found
an interested, critical audience for their radical answer to this fundamental question in
geometry.

Theorem 3.1.1 In hyperbolic geometry the difference, 180° — (m/ZA +m/B + m/C), between 180°
and the angle sum of a triangle is proportional to the area of the triangle.

Exercise 1 Compare Theorem 3.1.1 with Theorem 1.6.3.

Theorem 3.1.1 suggests that we could decide “which geometry is true” by measur-
ing real triangles. Since 1890, mathematicians and physicists have realized the futility

7

Figure 3.1 Figure 3.2
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CARL FRIEDRICH GAUSS

Carl Friedrich Gauss (1777-1855) dominated mathematics during the first half of

the nineteenth century, making fundamental contributions to virtually every area of
mathematics. The prince of his small German state sponsored his education after learning
of his prodigious abilities as a child. By age five he had found an arithmetic error in
his father’s accounts. In another story his grade school teacher made the class add the
numbers from one to one hundred. After some thought Gauss found a formula and simply
wrote down the correct answer, whereas his classmates toiled and made mistakes.

Gauss soon won acclaim as a mathematician. At 18 he developed the method
of least squares, which is used extensively in statistics. A year later he constructed
with straightedge and compass a regular 17-sided polygon and later characterized all
constructible regular polygons, the first such advances since the ancient Greeks. He
earned his Ph.D. at 22 by giving the first proof of the fundamental theorem of algebra,
which says that every polynomial with real or complex coefficients has all of its roots in
the complexes. Two years later, he published his first major treatise on number theory,
rejuvenating that ancient area. That same year, 1801, Gauss astonished astronomers by
determining the orbit of the first asteroid, Ceres, based on only a few observations and
after it had been lost from view owing to weather conditions. To do so he had to generalize
his method of least squares. Gauss subsequently became a professor of astronomy and
director of the observatory in Gottingen.

By 1800 Gauss had become convinced that Euclid’s parallel postulate could not
be proven, and in installments he developed what he called non-Euclidean geometry.
Although none of this work was published until after his death, he did correspond with a
number of mathematicians about it. Gauss also made seminal contributions to differential
geometry, including the curvature of a surface and geodesics. He showed that Gaussian
curvature determined all the properties of a surface not related to how it is placed in a
surrounding space.

Gauss’s contributions on complex numbers persuaded mathematicians that complex
numbers were essential in mathematics. He represented complex numbers geometrically,
extended number theory to complex integers, and contributed fundamentally to what is
now called complex analysis. He advanced knowledge in astronomy, magnetism, optics,
and other applied fields.

Gauss’s contemporaries revered him as the “Prince of Mathematicians,” and he is
often considered the greatest mathematician since Newton. He was also one of the last
who could claim to know all the mathematics in existence at his time. Gauss’s work
can be seen both as crowning the great expansion of mathematics in the sixteenth and
seventeenth centuries and as igniting the explosion of specialized, abstract mathematics
since then.

of empirically deciding which geometry is correct because physical assumptions to test
mathematical relations must be made. For example, we would have to assume that the
path of a light ray is a straight line in order to measure even a moderately large triangle.

The first notable response to the advent of hyperbolic geometry came in 1854 in a
lecture delivered by Georg Friedrich Bernhard Riemann (1826-1866) for his introduc-
tory lecture to the faculty at Gottingen University. Only Riemann’s teacher, the aging

This paragraph needs to be rewritten. There is no evidence that
Riemann knew about hyperbolic geometry at the time of his 1854 talk.
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well enough and dying before the age of 40.

GEORG FRIEDRICH BERNHARD RIEMANN

Bernhard Riemann (1826-1866) had obvious mathematical ability early in his life.
Nevertheless, he started studying theology at age 20 at the request of his father, a
Lutheran minister. Within a year, though, he had turned to mathematics and finished his
Ph.D. at age 25 under Gauss’s direction. He became a professor at Gottingen University

Although Riemann is also remembered for Riemann sums and integrals that appear

in calculus texts, his major work focused on physics and more advanced mathematics.
Riemann made profound contributions to complex analysis and what later became

topology and differential geometry. He blended deep physical and geometric intuition
with insightful arguments. Some of his contemporaries criticized his proofs for a lack

of rigor. However, his approaches, conjectures, and results have shaped all the areas he
investigated.

Barely 10 years after mathematicians started exploring n-dimensional Euclidean

geometry, Riemann's introductory lecture as a professor in 1854 developed a concept of
space far more general. His vision of what we now call differential geometry included
Euclidean, hyperbolic, spherical, and elliptic geometries, in any number of dimensions,
as special cases. He showed how to base the concept of space on theoretical or physical
measurements of distances. How those measurements of a space differed from the
corresponding Euclidean measurements based on the Pythagorean theorem described
how that space was curved. Sixty years after Riemann’s death his work became the

foundation for Einstein’s general theory of relativity, which related those measurements
to the effects of gravity.

Gauss, apparently caught the point of this lecture, entitled “On the Hypotheses which
underlie Geometry.” However, this talk, published after Riemann’s death, focused ge-
ometric thought on a new field, differential geometry, and spurred an active debate on
non-Euclidean geometries. Riemann had realized that the work of Gauss, Lobachevsky,
and Bolyai was more than playing abstractly with a postulate. In essence, he recog-
nized that the revised postulate implied that space had to be shaped differently than
what Euclid’s fifth postulate implied. He then articulated how infinitely many different
geometries could be created, each with its own “shape.”

Differential geometry, the field pioneered by Riemann, Gauss, and others, inves-
tigates geometries by looking at how they behave in small regions and, in particular,
how they curve. Where Euclidean geometry is flat and spherical geometry is curved
positively, hyperbolic geometry has a uniform negative curvature, as the model of the
pseudosphere (Fig. 3.3) indicates. Riemann envisioned geometries in any number of di-
mensions with changing curvatures throughout. The general theory of relativity builds
on Riemann’s work on the curvature of space. Einstein used a four-dimensional geom-
etry (three spatial dimensions and time) curved at each point by the gravitational forces
acting there. Light waves travel along geodesics, paths of shortest length following the
curvature of the surrounding space. In a sense, Einstein’s theory settled the nineteenth
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Figure 3.3  The effect of the characteristic axiom: A pseudosphere.

century question of the empirical truth of Euclidean and hyperbolic geometries in a sur-
prising way: Both are false! (See do Carmo [3], Kline [6], McCleary [7], Rucker [10],
and Weeks [13] for further information.)

The abstraction throughout mathematics and the strangeness of the new geome-
tries led mathematicians to search again for absolute certainty in their mathematical
arguments. No longer could mathematicians rely on an intuitive model to reveal 'the es-
sential idea behind an argument. They examined the axioms for geometry, culminating
in Hilbert’s axioms for Euclidean geometry (see Section 1.3). Hilbert chose these ax-
ioms so that, by replacing the axiom for parallel lines with the characteristic axiom that
we just presented, he would have axioms for hyperbolic geometry. (See Bonola [1] and
Kline [6, Chapter 36] for further historical information.)

3.1.2 Models of hyperbolic geometry

In the latter part of the nineteenth century, various mathematicians developed models
of hyperbolic geometry. We partially treat some of these models here. Each has some
disadvantages, but they all help give a feel for this geometry. These models are based
in part on a Euclidean plane or space, with suitable interpretations of the undefined
terms. For the Poincaré model, we first need a definition: Two (Euclidean) circles
are orthogonal iff the radii of these circles at the circles’ points of intersection are
perpendicular (Fig. 3.4). In all of these models the terms on and between have their usual
meaning. In the language of Section 1.4, these models show the relative consistency of
hyperbolic geometry based on Euclidean geometry.

Figure 3.4  Orthogonal circles.
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/>

Figure 3.5 The effect of the characteristic axiom: The Klein model.

Point means a point in the interior of a particular Euclidean
n of a Euclidean line in the interior of that circle. Figure 3.5

aracteristic axiom holds in this model. Thi
advantage is the matrix repre

both distances and angle me

s model’s biggest
sentation of its transformations (see Chapter 6). However,
asures are complicated in this model.

The Poincaré Model (1882).

Point means a point in the interior of a particular
Euclidean circle. Line means the

portion interior to the given circle of any one of its

orthogonal to this circle. The chief advantage of this
model is that angles are measured as they would be for curves in Euclidean geometry.

Hence, as Fig. 3.6 illustrates, the angle sum of a triangle is less than 180°. The picture at
the beginning of this chapter is based on the Poincaré model. Because angle measures
are Euclidean, the repeated objects in this design are recognizably the same, although
somewhat distorted to our eyes. The hyperbolic size of each of these creatures is the
same in this model, which gives a sense of how distances are measured with the same
complicated formula as the Klein model. In Section 4.6 we consider the transformations
for this model and their connections with complex numbers.

Figure 3.6  In the Poincaré model, the angle sum is less than 180°.
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Figure 3.7  In the half-plane model, the angle sum is less than 180°.

The Half-Plane Model (1882).  Point means a point in thg upper half of the‘Euil:iil;z;?
plane [that is, points (x, y) with y > O]. Line means.the ;_)ort10n aboye the’);—axn]s 0 e
a vertical line or a circle with its center on the x-axns’ (Fig. 3.7). Iiomcare (lave ope e
model and showed its close relation to the Poincgre model_. Thls model :11 50 measu o
angles as Euclidean angles and, in addition, contains equgtlons of lines tdatl are easy
find. However, distances appear even more distorted than in the other models.

The Pseudosphere (1868). Eugenio Beltrami developed this ﬁ.rst model of hyper;
bolic geometry. Figure 3.3 shows the surface of a pseudosphere. Ltr'zes are the pathslo
shortest distance along the surface (geodesics). Furthermore,.both dlSlﬂTCﬁS and angles

i ides ner. Thus this model is fairly natural.
are measured in a Euclidean man 00 B ey
sphere shown in Fig. 3.3 is an ad hoc gluing together of two portions (sgg BELoW.)

Unless explicitly stated, the figures in the rest of Fhis chapFer are not based on any
of these models. This procedure will encourage thinking of .th1§ geometry as an e?tll:e
system, not just an isolated exercise applying only to an artificial modeli. Many o T:] e
lines drawn in the figures will be curved so that they will no_t appear.to intersect. 1§
corresponds to one of the findings of Saccheri, mentioned earlier, that lines can approac
one another in this geometry without intersecting.

PROBLEMS FOR SECTION 3.1

1. Use the Klein model of hyperbolic geometry to y=-(9/13)x, two diameters of the unit c1rclct.O
' investigate how many lines through a point P do not Include these two lines in the graph for part (a)
intersect a (hyperbolic) line k that is not on P. fonT1 a tr.langle. N
2. Use the points inside the (Euclidean) unit circle ¢) _Venfy v1sqally tbal: the] gggle sum of the triang
x% 4+ y2 = 1 for the Poincaré model. in part (b) is less than .
Show that the circle (x — 1.25)% + y? = (0.75)? d) Find the measures of the three angll]es_ of the S
a) is orthogonal to the unit circle. Graph these two triangle in part (b)‘ and verify that tdelrb sum‘ i
i Ol ogn the same axes less than 180°. [Hint: The angle made by a line
circles .

and a circle is the angle made by that line and

b) Find the intersections (inside the unit circle) of the tangent to the eircle at fheir intersection.,

the circle from part (a) with y = (9/13)x and

Itis possible to extend either portion, but the surface is no longer
‘analytic.' In particular, it becomes increasingly wrinkled."
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We can think of two vertical lines as meeting at 'infinity," outside
of the model, and so they are also sensed parallels to each other.

The slope of a line equals tan «, where « is the
angle the line makes with the x-axis. The formula
tan(a — B) = (tan o — tan B)/(1 + tan « tan B)
converts slopes of two lines to the angle between
them.]

3. Although three-dimensional Euclidean space satis-

fies the characteristic axiom, it doesn’t satisfy all the
axioms of plane geometry. Find which of Hilbert’s

axioms in Appendix B fail in three-dimensional
Euclidean space.

- Use the half-plane model of hyperbolic geometry.

a) Find the equation of the line that is on the points
(1, 1) and (4, 2).

b) Explain why the equations of lines in this model
are either x =c or y = /r2 — (x — ¢)?, for
appropriate constants ¢ and r.

¢) Use a Euclidean argument to explain why two

points in this model haverne line which is on
both of them. exactly

d) Verify that the point (—4, 10) is not on the line
y =+/25 — (x + 4)2. Find the equations of two
lines on (—4, 10) that do not intersect the line

25 — (x + 4)2. Graph these three lines.

e) Use a Euclidean argument to explain why the
characteristic axiom always holds in this model.
[Hint: Consider the two kinds of lines separately.]

f) Verify that the two lines y = +/25 — x2 and
y =+/16 — (x — 1)% do not have a point of the

model in common, although they do intersect
in a Euclidean point as curves in the Euclidean
plane. Find this Euclidean point. We call these
lines sensed parallels. A

g) Verify that every point in the model has at least
one sensed parallel to the line y = +/25 — x2 ip
the sense that the only Euclidean intersection
of the sensed parallel with y = /25 — x2 is the
Euclidean point you found in part (e). Explain
why there are exactly two sensed parallels to a
line through a point not on that line.

. (Calculus) In the half-plane model of hyperbolic

geometry, consider the triangle formed by the lines
y=v5-(x-32, y=/10— (x — 4)2, and

x =4. Find the three vertices of this triangle and

graph it. Find the measures of the three angles of

this triangle. [Hint: See Problem 2(d). Use calculus

and trigonometry. The angle sum is approximately
161.6°]

. A curious property of hyperbolic geometry is that

any two lines that do not intersect and are not sensed
parallels (described informally in Problem 5) have a
common perpendicular. Use the half-plane model of
hyperbolic geometry to illustrate this property with
the two lines y = +/1 — x2 and x = 2. Graph these
lines first. Then use relevant Euclidean concepts,
including orthogonal circles, to find the hyperbolic
line perpendicular to both of them.

3.2 PROPERTIES OF LINES AND OMEGA TRIANGLES

We develop hyperbolic geometry following the path of Saccheri, Gauss, Lobachevsky,
and Bolyai, but adding the foundation of Hilbert and others. We can thus accentuate the
geometric intuition of earlier work while having the logical basis required to avoid the
flaws discovered later.

Our undefined terms are point, line, on, between, and congruent. Our axioms are
Hilbert’s axioms for plane geometry (see Appendix B), with the exception of axiom
IV-1; Playfair’s axiom, which we replace with the characteristic axiom of hyperbolic
geometry. (See Section 3.1.) We also avail ourselves of Euclid’s first 28 propositions, or
those he proved without using the parallel postulate. (See Appendix A.) These proposi-
tions give us many of the key properties about lines and triangles, which we need in our
development of hyperbolic geometry. They are provable in Hilbert’s axiomatic system
without our having to use either axiom IV-1 or the characteristic axiom.

Like the developers of hyperbolic geometry, we prove many theorems in this chap-
ter, including Theorem 3.2.1, by contradiction. Until 1868, when Beltrami built the
first model of hyperbolic geometry, mathematicians wondered whether the characteris-




