b) Find and graph the fourth-degree polynomial
described in Theorem 2.4.1 that goes through
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—Z,-1),(0,0), (3, 1) and (7, 0) and have the
same derivatives as sin x at those points.

the points (0,0), (5, 1), (=7, = 1), (7, 0), and d) Graph y = sin x and compare the advantages
(—m,0).

¢) Find and graph the cubic polynomials described approximations for y = sin x.
in Theorem 2.4.2 that connect the points (—, 0),

and disadvantages of each of the preceding

2.5 HiIGHER DIMENSIONAL ANALYTIC GEOMETRY

Definition 2.5.1
27?+ —13)
_)
U

The formal, algebraic language of analytic geometry and vectors has enabled mathe-
maticians to model higher dimensions as easily as two or three dimensions. The first
investigations of geometry beyond three dimensions by Arthur Cayley and others start-
ing in 1843 seemed puzzling and even nonsensical to most people, including many
mathematicians. However, the variety and importance of applications in mathematics,
physics, economics, and other fields in the twentieth century have provided convinc-
ing evidence of the significance and naturalness of higher dimensions in geometry. We
briefly consider the analytic geometry of R? before discussing polytopes, the higher
dimensional analog of the polyhedra we considered in Section 1.6.

By a point in n-dimensional Euclidean geometry, we mean a vector v = (vy, vy, . . ., Uy)
in R". By a line we mean a set of points {¢ % + v : « € R}, where ¥ and ¥
are fixed vectors and W # 0. A point W is on the line above iff for some «, W =
a + V. Two lines o + ¥ and B3 + 7 are parallel iff 5 is a scalar multi-
ple of . The distance between two points ¥ and U is d(%, V) = || u — v I =
Vur—v)2+ (o — )2+ - + (un — vu)%. A plane is the set of points {au +
BV + W :a,B R}, where W and ¥ are independent vectors and W is any fixed vector.

Remarks  Figures 2.34 and 2.35 illustrate lines and planes in R3. In the definition of
a line, we shift the line through the origin (or one-dimensional subspace) {¢ % : « € R}

=l

—
v

Figure 2.34 A line in R3. Figure 2.35 A plane in R3.
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Exercise 1

Example 1

Exercise 2

Analytic Geometry

by adding the vector ¥ so that we have a line through . Different vectors ¥ give
different parallel lines. The definition of a plane is similar to the definition of a line. The
set {&W + BV :a, B € R} is a two-dimensional subspace of R". Adding the vector w
translates this subspace to the parallel plane through %. In R3, a plane can also be rep-
resented as the set of points (x, y, z) satisfying a linear equation ax + by+cz+d=N0.
In general, a linear equation in n variables, such as a;x; + axy+ - +apx,+d=0,
represents an n — 1-dimensional hyperplane in R". The formula for distance comes
from the generalization of the Pythagorean theorem.

Explain Wh.)i the line through two points § and 7 consists of points of the form
a(f —~ t_l +_»t : [Hin_+t.' Consider @ = 0 and o = 1.] Explain why the plane through three
points r, s, and ¢ consists of points of the form a(r — 1) + BG—1)+T1.

Use analytic geometry to verify that in three-dimensional geometry, if two distinct
planes intersect, they intersect in a line.

Solution.  Let’s begin with two distinct planes « %@ + 7 + W and y 7 + 65 + 7.
Then the coordinates of the six vectors are known, but the values of the four scalars
can vary. If the point @ = (ay, a2, a3) is on both planes, the following system of three
equations in the four unknowns «, B, ¥, and § has a solution.

~auy + Buy +wy =y +8s1 + 1 (=ay).
auy + Pvr + wr = yry + 852 + (= ay).
oau3 + vy + w3 = yry + 8s3 + 13(= as).
However, as there are more unknowns than equations, elementary linear algebra

assures us of infinitely many solutions. The planes are distinct, so these solutions must
correspond to the points on a line, not a whole plane. e

Conics (Section 2.2) generalize to conic surfaces in three dimensions. Some of
these surfaces, such as the ellipsoid (x?/a?) + (y2/b?) + (z2/b?) = 1, the hyperboloid
of two sheets x2/a? — y2/b* — z2/b* =1, and the paraboloid z = ax? + ay?, can be
defined using foci (and a plane as a directrix for the paraboloid) in the same way
as conics are defined. More generally, we define a conic surface as the set of points
satisfying a second-degree equation in x, y, and z. (Note that the terms xy, xz, and yz
are considered second degree, as are x2, y2, and z2.)

Verify that, if a® > b?, the ellipsoid must have foci at the points (vaZ — b2, 0, 0) and
(—va? — b2, 0, 0) as follows. Verify that, for x = 0, a, or —a, the sum of the distances
from any point (x, y, z) on the ellipsoid to these foci is constant.

A hyperboloid of one sheet (Fig. 2.36) has an unusual property: Lines lie entirely
on the surface, even though the surface is curved.

Gaspard Monge (1746-1818) developed descriptive geometry, a method of repre-
senting three-dimensional geometric constructions by means of two (or more) two-
dimensional projections. This method radically improved engineering design. Fig-
ure 2.37 illustrates how descriptive geometry enabled engineers to design on paper exact

plans for their constructions. Computer-aided design now supersedes this hand-drawn
approach but is based on the same analytic geometry.

2.5 Higher Dimensional Analytic Geometry
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GASPARD MONGE

At age 22, Gaspard Monge (1746-1818) became a professor of mathematics and alt] 25t,
a professor of physics. His brilliance and gift as a teache‘r were recogngd throug ogt
his life. He supported the French Revolution and made important contrlbu.tlons to i J
and to Napoleon’s regime that followed. About the t{me the French Revolqtlon gruptle
(1789), Monge developed descriptive geometry, leading to accurate two-dlmens.lrm(lja )
engineering drawings of three-dimensional ﬁgures._ The new government recognized the
military importance of this method and classified it top secret. Mongelser\{ed in various
government positions, including a ministerial post. His greatest contribution was the
founding in 1795 and the sustaining of the Ecole Polyte_chn}que. quge contributed 1
greatly to our understanding of education with the organization of this renowned’ schpo
and his own teaching. Monge and Napoleon became friends and, upon Napoleon's exile,
Monge lost his official positions. No official notice was given of his death soon after, but
his students mourned him. . .
In addition to his development of descriptive geometry, Mongg was 1nstrumental in
championing geometric methods in mathematics following a pen.od of dominance
by algebra and calculus. He recognized the need for both analytic and synthetic
geometric approaches and revived interest in projective geometry. ﬂe also made major
contributions to what we now call differential geometry, making it into a separate branch

of mathematics.

Figure 2.36 A hyperboloid of one sheet.
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Figure 2.37  Two projections of a simple shape.

2.5.1 Regular polytopes

Mathematicians have studied polygons in two dimensions and polyhedra in three di-
mensions for millennia. By 1850 some of the earliest geometry of higher dimensions
studied the analog of these shapes, called polytopes. A polyhedron is constructed by
attaching polygons at their edges. Similarly, attaching polyhedra at their faces results
in a four-dimensional polytope. As few of us can imagine such a construction, coordi-
nates help us analyze polytopes. Here we consider only some of the regular polytopes.
A four-dimensional convex polytope is regular provided that all the polyhedra in it are
the same regular polyhedron and the same number of polyhedra meet at every vertex.
Higher dimensional polytopes can be defined similarly. (See Coxeter [3, Chapter 22].)

Recall that there are five regular polyhedra in three dimensions. Several nineteenth
century mathematicians discovered independently that there are a total of six regular
polytopes in four dimensions, but for each dimension greater than four, there are only
three regular polytopes. These three families of regular polytopes are the analogs of
the cube, the tetrahedron, and the octahedron, which fortunately have simple Cartesian
coordinates.

The Cube and Hypercubes. )
Figure 2.38 illustrates one convenient way to place a square and a cube in Cartesian
coordinates. Note that each coordinate of each point is either 1 or —1. Furthermore,
for the cube, every possible combination of three such coordinates appears among
the 8 = 2 points. This suggests a way to generalize to four dimensions. Consider
the 16 = 2% points in R* whose coordinates are all +1, some of which are labeled in
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-1,-1,1)

-1, 1,1)

1, 1) | an &
(1,1, 1)

RS T s
(-1, 1,-1)

-1.-1) I (1.-1) (1,-1,-1) (1, 1,-1)

Square Cube
Figure 2.38

Fig. 2.39. These points are the vertices of a hypercube. The distance between two points
joined by an edge in Fig. 2.39 is 2. Each point has four neighbors at this distance. The
other possible distances between points on the hypercube are 2+/2,2+/3, and 4.

Exercise 3 Find points on the hypercube at distances 2, 2+/2,2+/3, and 4 from (1, 1, 1, 1).

The Octahedron and Cross Polytopes.
The placement of the square and the regular octahedron in Fig. 2.40 suggests a way
to generalize these figures. In R*, consider the eight points with O for three of their
coordinates and 1 or —1 for the other coordinate. We designate these eight points as the
vertices of the regular four-dimensional analog, called a cross polytope. Connect two of

-1,-1,1,1) -LLLD

(1, 1,1, 1)

(1

a,1,-1,-1)

1,1, =1, 1)
{1, =1, 24, =1)

(1,-1,-1,1) (1, 1,-1,1

Figure 2.39 A hypercube.
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In this section, we discussed polytopes primarily to develop intuition for four-
dimensional geometry. However, polytopes serve other purposes as well. For example,
hypercubes provide a useful model in coding theory, where the vertices correspond to
possible coded words. (See Section 7.3.) The simplex method in linear programming
uses polytopes in many dimensions to find optimal solutions to many applied problems.
Simplices form fundamental building blocks in topology.

PROBLEMS FOR SECTION 2.5.
1. a) Find the plane through (0, 0, 0), (1,2, 4), and

b) Consider Fig. 2.43. Explain whether lines k and

Square Octahedron

Figure 2.40

these vertices with an edge if their nonzero values appear in different coordinates. Thus
(0, 1,0,0) and (0, 0, —1, 0) are connected with an edge, but (0, 1, 0, 0) and (0, —1, 0, 0)
are not connected.

Exercise 4 Find the two possible distances between vertices for the four-dimensional analog of the

octahedron. Verify that each vertex is on six edges.

The Tetrahedron and Regular Simplexes.

The rectangular coordinate system doesn’t give easy three-dimensional coordinates for a
regular tetrahedron. However, Fig. 2.40 suggests another approach. The octahedron has
a triangular face with particularly simple coordinates: (1, 0, 0), (0, 1, 0), and (0, 0, 1).
Similarly, in four dimensions (1, 0, 0, 0), (0, 1, 0,0), (0,0, 1, 0), and (0,0, 0, 1) are
the vertices of a regular tetrahedron. Each vertex is a distance of +/2 from the others.
Now we can describe the regular four-dimensional simplex, as it is known. This shape
(Fig. 2.41) has five vertices with coordinates (1, 0, 0, 0, 0), (0, 1, 0, 0, 0), (0,0, 1, 0, 0),
0,0,0, 1,0), and (0, 0, 0,0, 1). Each pair of vertices is connected for a total of 10 edges,
all the same length. Similarly, every triple of vertices forms an equilateral triangle, and
every quadruple of vertices forms a tetrahedron. Higher dimensional regular simplexes
can be found in the same way.

Figure 2.41 A regular four-dimensional simplex.

(2, 0,0) by using both vectors and an equation.
b) Explain why the plane 2x + 3y — 4z =0 is
perpendicular to the line through (2, 3, —4)
and the origin in three dimensions. [Hint:
Use vectors.] Is 2x + 3y — 4z 4+ 5 =0 also
perpendicular to that line? Explain.

. If two planes in R* intersect in at least one point,

must they intersect in more than that one point? (See
Example 1.) If so, show why. If not, find an example
of two planes in R* intersecting in only one point.

. (Descriptive geometry) In this problem you are to

project onto the xy-plane and the yz-plane; that is, a

point (x, y, z) will project to (x, y) and (y, z), and

a line k has two projections, k| and k; (Fig. 2.42).

The yz-projection directly above the xy-projection

indicates that the y-coordinates match.

a) Redraw Fig. 2.42 and include the line parallel to
k through the point P. Explain why your line is
parallel to k.

® P,

ky
\k

.P2 2

Figure 2.42  Projections of a point and a line.

m are parallel, intersect, or neither.

m)

ny

Figure 2.43  Projections of two lines.

¢) Find a convex solid other than a cube whose two
projections are squares. Suppose that in addition
the projection of this convex solid on the xz-plane
is also a square. Must the solid be a cube? If so,
explain why. If not, give an example.

. a) Suppose that you know the distances of point

(x, y) from points (0, 0), (1,0), and (O, 1).
Explain why no other point (X, y) can be at the
same respective distances from these points.

b) Explain why part (a) holds if you replace (0, 0),
(1,0), and (0, 1) with three points not on a line.
What happens if the three points are on the same
line?

¢) Generalize part (a) to three dimensions. How
many points are needed?

d) Redo part (c) in n dimensions.
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PROJECTS FOR CHAPTER 2

5. a) Define an ellipsoid, a hyperboloid of two sheets,

and a paraboloid, based on the corresponding
definitions from Definition 2.2.1.

b) Derive the text’s equations for the conic surfaces
of part (a).

. a) Explain why the equation of the unit sphere is
4+ +2=1

b) Explain why the equation of a great circle on the

unit sphere is ax + by + cz = 0, where not all a,
b, and c are zero. (See Section 1.6.)

Represent a great circle by its triple [a, b, ¢] and

a point by (x, y, z). Then (x, y, z) is on [a, b, c]

provided that ax + by + cz = 0.

¢) Find the two points of intersection of the great
circles [2,2, 1] and [2, —2, 1]. Find the great
circle through the points (%, % %) and (%, ”TZ %).

d) Explain why the point (p, g, r) is perpendicular
(orthogonal) as a vector to every point on the
great circle [p, g, r]. [Hint: Use linear algebra.]

. Plot, preferably with a computer graphics package,
the following space curves and surfaces given
parametrically. Describe the shapes in words.

a) The curve x(#) =cost, y(t) =sint and z(1) =1.

b) The curve x(t) =t cost, y(t) =t sint and
z(t) =t,fort > 0.

¢) The surface x(u, v) = +/1 —u?cos v, y(u, v) =
V1 —u?sinvand z(u,v) =u,for—1<u < 1.
d) The surface x(u, v) = /1 +u?cosv, y(u, v) =
1+ u?sin v and z(u, v) = u.
. The hyperboloid x + y? — z2 = 1 (See Fig. 2.36)
has lines that lie on its surface. Start with a line
through (1, 0, 0) and a point on the hyperboloid at a
height of z = /3.
a) Explain why points on the hyperboloid with
z = /3 can be written as (2 cos 8, 2 sin 0, v/3).
Explain why the line through this point and
(1,0,0) is given by @(2 cos 6 — 1,25sin 0, /3) +
(1,0,0).
b) Explain why, if the line in part (a) is on
the surface of the hyperboloid, it is also on
(2 cos —6, 2 sin —60, —/3) = (2 cos §, —2 sin 6,
—+/3). Show that 6 satisfies cos 6 = . Find the
two values of sin 0 and determine the two lines.

¢) Prove that every point on the lines in part (b) lies
on the hyperboloid.

10.

d) Explain why an appropriate rotation of the two
lines you found will give two lines through every
point on the hyperboloid.

e) Make a model of this hyperboloid by stretching
strings between two circles. When one circle is
rotated over the other, the strings lean to form a
hyperboloid (Fig. 2.44).

Figure 2.44

. a) An edge, a square, a cube, and a hypercube are

analogous shapes in one to four dimensions. For
each, count the edges per vertex, faces per vertex,
and so on, and the total number of vertices, edges,
faces, and so on. Make a table of this information.

b) Look for patterns, and explain any patterns
you find. If possible, write formulas for these
categories, based on only the dimension.

¢) Find the values corresponding to part (a) for
the five-dimensional and six-dimensional hyper-
cubes.

The octahedron is the dual of the cube: when you
connect the centers of the cube’s faces, you get
an octahedron. Thus the octahedron has the same

. number of vertices as the cube has faces, and vice

versa. How are their edges related?

a) In what way is the four-dimensional cross
polytope the dual of the four-dimensional
hypercube? Use this duality to find the number
of vertices, edges, faces, and octahedra of a four-
dimensional cross polytope.

b) Repeat part (a) for the five-dimensional cross
polytope.

1. Define and investigate taxicab conics and other
topics in taxicab geometry. (See Krause [8].) Note:
Different positions of the foci and different slopes
of the directrix lead to different-looking ellipses,
hyperbolas, and parabolas.

2. Pick’s theorem gives the area of many lattice
~polygons, that is, polygons whose vertices have
integer coordinates, called lattice points.

a) For each lattice polygon shown in Fig. 2.45,
find its area and count the number B of lattice
points on the boundary of the polygon and the
number / of lattice points in the interior of the
polygon. Find an equation relating the area with

the numbers B and /. Does this equation hold for

the polygons shown in Fig. 2.46?

-

N

*

Figure 2.45

JRAN

Figure 2.46

b) Prove your equation for lattice rectangles parallel
to the axes.

¢) Do the lattice shapes shown in Fig. 2.47 satisfy
your equation? Explain how these polygons differ
from those in Figs. 2.45 and 2.46. State Pick’s
theorem, incorporating any needed hypotheses.

X XXX X
NIXIX[{X] X
X} X

XX
7

X125 +,\’,\’,\’

73
A
b

}

Figure 2.47

d) Add an interior edge to divide a lattice polygon
into two smaller lattice polygons (Fig. 2.48). How
do B and [ for the smaller polygons compare to
those of the original polygon? How far can you
carry this process of dividing? What can you say
about the smallest lattice polygons? (See Coxeter
[3, 209] for a proof of Pick’s theorem.)

Figure 2.48

e) Develop, state, and prove a restriction of Pick’s
theorem in three dimensions to rectangular
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boxes parallel to the axes (Fig. 2.49). Does this
restriction work for pyramids? (Fig. 2.50.)
Reeve [10] proves a general three-dimensional
version.

117

Figure 2.49

Figure 2.50 A pyramid with height 1.

. Investigate computer-aided design. (See Mortenson

(91,

. Investigate descriptive geometry. (See Douglass and

Hoag [4].)

. Investigate polytopes and four-dimensional geome-

try. (See Coxeter [3, Chapter 22] and Rucker [11].)

. (Calculus) The folium of Descartes ( x3 - 2xy +

y? =0, shown in Fig. 2.1) is a challenge to graph by
hand, even with the aid of calculus.

a) Use implicit differentiation to find dy/dx.
b) Find the values of x and y for which dy/dx = 0.

¢) When is dy/dx undefined? At these points the
curve has a vertical tangent. How are these points
related to those in part (b)?

d) Find the points on the curve where x = y. Why
is the curve symmetric with respect to this line?

e) Graph this curve, using the previous information
and Newton’s method to plot points on the curve.

f) Graph the folium of Descartes parametrically,
using the following tricky substitution. In x3 —
2xy +y3 =0, replace y by tx and solve for x to
find x(¢). Then find y(r) = tx(¢). Verify that this
graph matches the results in parts (a)—(e).

. Napoleon’s theorem. On each side of a triangle,

construct an equilateral triangle lying outside (or
inside) the triangle. The centers of these three
triangles form an equilateral triangle.

a) Show that in an equilateral triangle with side
x, the distance from the center to any vertex
is x/+/3. Also, rewrite cos(A + 60°) by us-
ing the formula cos(A + B) = cos A cos B —
sin A sin B.

WLOG let the vertices of the triangle be
§=1(0,0), T =(p,0), and U = (g, r). Call
the centers of the three constructed equilateral
triangles V, W, and X (Fig. 2.51). Napoleon’s
theorem states that VW, VX, and WX are
equal.

b) Explain why showing that VW = WX is suffi-
cient.

¢) Find ST, SU, and TU and then SV, SW, TW,
and T X.

d) Explain why ZV SW is 60° wider than ZU ST and
similarly why /X T W is 60° wider than ZUTS.

€) Use part (a) and the law of cosines to verify that
both VW2 and W X2 equal (p? + g% +r% — pg +
V3pr)/3.

f) Write a proof of Napoleon’s theorem.

. Julius Pliicker (1801-1868) extended the idea of a

coordinate system enormously when he realized that
entities other than points could have coordinates.
For example, circles in the plane can have “circular
coordinates” (a, b, r), where (a, b) is the center and
r > 0 is the radius of the circle. Thus the set of circles
in the plane is, in a sense, three dimensional.
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a) Find the circular coordinates for the circle
2 +y2+4x -6y —-3=0.

b) Find the equation of a circle having circular
coordinates (5, —4, 7).

¢) Devise a set of “linear coordinates.” How
many “dimensions” does the set of lines in the
plane have? Find, in your linear coordinates,
the coordinates of the line whose equation is
y =3x 4 5. Can two distinct pairs of your
linear coordinates represent the same line? Are
there any lines that do not have coordinates
in your system? (Consider x = 4.) Are there
any subsets of coordinates in your system that

Figure 2.51

do not represent lines? (See Eves [6] for more
information.)

9. Write an essay exploring the meaning of geometry
in four or more dimensions. Suggestions: Compare
multidimensional with plane geometry in a world
that is strictly three dimensional. (See Rucker [11].)

10. Write an essay comparing analytic and synthetic
‘geometry as ways to explain geometric concepts.

11. Write an essay comparing the certainty of algebraic
derivations of geometric properties with the certainty
of proving those properties in an axiomatic system.
(See Grabiner [7].)

Napoleon’s theorem.
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