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Chapter 2 Analytic Geometry

a) Describe all coordinates for the north and south
poles.

b) Describe the curves on the sphere for y = a and
x=b.

¢) Describe the curves on the sphere for y =
mx + b.

12.
. with a distance function corresponding to the

Find a line that intersects y = 0 infinitely many
times.

¢) Which of Hilbert’s axioms in group I and IV
(Appendix B) hold in this model? Explain.

Taxicab geometry is an alternative analytic model
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(-3.1,32.886) @ T e (3.1, 32.886)

d) If you interpret point as a point on the sphere distances taxicabs travel on a rectangular grid of (-1.8,14.18) @ I ®(1.8,14.18)
and line as any of the curves of parts (b) and streets. The taxicab distance between A = (a, b)
(c), which of Hilbert’s axioms from group I and § = (s, 1) is dr(A, §) = |a — s| + |b —1]. 1
(Appendix B) are true? Explain. This geometry has quite different properties from T
11. Assign coordinates to the points on the surface of Euclidean geometry. (See Section 1.4.)  (1:.358) y (L. 258) '
a torus (a doughnut) using longitude and latitude a) How are two points that have the same Euclidean - ' ' (0, 0) ) '

measured in degrees (Fig. 2.23). Every point (x, y)
has multiple representations, such as (x + 360°,

y + 720°). Interpret point as a point on the surface
of a torus and line as the set of points satisfying an

and taxicab distances related? If these distances
are different, which is larger? If the smaller
distance is 1, how large can the other distance
be? Explain and illustrate.

Figure 2.24  The given points for Examples 1, 2, and 3.

: Example 1  Find the parabola y = ax? + bx + c that goes through the three points (0, 2), (1, 3), and
equation of the form ax + by + ¢ =0. b) A taxicab circle is the set of points at a fixed @3, =7).
taxicab distance from a point. Describe taxicab .
circles. What are the possible types of intersec- Solution. When we replace x and y by the values for each point we get three first-
tion of two taxicab circles? Illustrate each. degree equations ina, b,and c:2=c¢,3=a+ b+ ¢, and =7 =9a + 3b + c. Solving
¢) A taxicab midpoint M of A and B satisfies this system of three linear equations in three unknowns gives y = —2x24+3x+2. @
dr(A, M) =dr(M, B) = }dr(A, B). lllustrate _ . ;
the different sets of midpoints two points can Theorem 2.4.1 Given n + 1 points P; = (x}, y;), for j =0 to n, with no two x; equal, there is exactly
have. one nth degree polynomial y = ag + ajx + - - - + a,x" such that for each j, y; =
d) The taxicab perpendicular bisector of two points ao +aixj + - - -+ anxj.
canprises of .allApoin.ls equidistant t"rom the two Proof. See Strang [12,80]. =
points. Describe and illustrate the different types
Figure 2.23  Coordinates on a torus. of taxicab perpendicular bisegtors. Example 2 For the seven points shown in Fig. 2.24, Fig. 2.25 shows a freehand curve connect-

a) Find values of a, b, and c so that the line
ax + by + ¢ = 0is finitely long. Find other values
so that that line is infinitely long.

b) Find a line that intersects n times with y =0.

13.

e) In the plane find four points whose taxicab
distances from each other are all the same.

Another distance formula on R? uses the maximum
of the x and y distances: For A = (a, b) and
S=(s,t),dy(A, S)=Max{|a — s|, |b —t|}. Redo
Problem 12, using dj.

2.4 CuURrVES IN COMPUTER-AIDED DESIGN

ing these points with no unneeded bumps. Figure 2.26 shows that the graph of the

Computer graphics depend heavily on analytic geometry. The computer stores the co-
ordinates of the various points and information about how they are connected. The
easiest connections are line segments and arcs of circles, which are easily described
with elementary analytic geometry. However, connecting a series of points smoothly re-
quires calculus and more advanced techniques, which we discuss briefly in this section.
Computer-aided design (CAD) uses polynomials—a flexible and easily computed fam-

ily of curves. For a sequence of points, we need a curve or a sequence of curves that
smoothly passes through the points in the specified order. A simplistic approach finds
one polynomial through all the points, as in the first two examples.

Figure 2.25 A freehand curve through the points in Fig. 2.24, with
slopes as indicated.
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Figure 2.26  The curve y = 35.93x2 — 12.97x* + 0.998x9.

polynomial given by Theorem 2.4.1, y = 35.93x% — 12.97x* + 0.9978x5, fits the free-
hand curve poorly. @

The method of Theorem 2.4.1 has serious drawbacks, starting with the poor fit
of Example 2. A second drawback is that the addition of another point or the shift of
one point necessitates completely recomputing the polynomial, as Fig. 2.27 illustrates.
Third, with a large number of points, the computations become time-consuming and
are prone to roundoff errors. Fourth, functions of y in terms of x cannot curve back on
themselves or represent space curves. Hermite curves solve all these problems. Instegd
of one polynomial going through all the points, we find a sequence of n — 1 parametric

30+
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W
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Figure 2.27 The curve resulting from shifting one point.

Theorem 2.4.2
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Figure 2.28 y= % - %x - %xz + %,\3 goes through (-2, 2) and

(2, —=2), with slopes of 1 and 0.

equations, using third-degree polynomials that connect neighboring points smoothly.
That is, the derivative at the end of one curve is the derivative at the start of the next.
The addition of a point in the middle or the repositioning of any point affects at most
two cubics. Each cubic can be computed quickly, at least by a computer. Finally, the
parametric form allows a curve to double back on itself, cross itself, or even twist into
as many dimensions as are needed. Many applications use cubic spline curves, which
build on the ideas presented here but do not need to be given the derivatives at the
endpoints. (See Mortenson [9].) We motivate Hermite curves with the simpler, non-
parametric situation of Theorem 2.4.2, illustrated in Fig. 2.28. :

Let two points be P = (xi, y;) and Q = (x, y2) with x; # x3 and the desired slopes
my and my at P and Q, respectively. Then there is a unique third-degree polynomial
f(x) =ap+ arx + azx? + a3x3 such that f(x;) = y), f(x2) = ya, f'(x;) = m,, and
f'(x2) = my.

Proof. By elementary calculus, f'(x)=a; + 2asx + 3asx2. The given points and
slopes, P, Q, my, and my, determine four linear equations in the unknowns ay, a, as,
and as:
yi=ao+ax; + alez + a3x13;
y2=ay+ayx; + a3x22 + a3x§’;
my=aj + 2axx; + 3a3x12;
my =a| + 2axy + 3a3x22.
This system has a unique solution iff the determinant
1 x xl2 x?
1 x x% x23
0 1 2x; 3x?
0 1 2x; 3x?

does not equal zero. This determinant equals —x} + 4x7x; — 6x%x2 + 4x1x3 — xj =
—(x1 — x2)*. Because X| # xp, there is always a unique cubic. m
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Example 3  Consider the points from Example 2, which we connect with a sequence of cubic
polynomials. We use the slopes given previously in Fig. 2.25. For example, for the
interval from x = —3.1 to x = —1.8, we have f(—3.1) =32.886, f(—1.8) = 14.18,
f'(=3.1) = —20 and f'(1.8) = —10. Theorem 2.4.2 gives the system:
ap — 3.1a; 4+ 9.61a; — 29.791a3 = 32.886;
ap — 1.8a; + 3.24a; — 5.832a3 = 14.18;
a) — 6.2a; + 28.83a3 = —20;
a; — 3.6a; +9.72a3 = —10.

This system gives the cubic y = —0.141 — 8.254x — 1.466x2 — 0.723x3. The other
cubics, from left to right, have for their equations y = —0.340 — 6.96x + 0.154x2 —
0.256x3, y = 37.4x2 + 16x3, y =37.4x2 — 16x3, y = —0.340 + 6.96x + 0.154x2 +
0.256x3, and y = —0.14 + 8.25x — 1.466x2 + 0.723x>. Figure 2.29 shows how well
these polynomials fit the path of the curve determined intuitively. @

Hermite curves, defined parametrically, allow even greater flexibility than the
curves of Theorem 2.4.2. The variables x = x| and y = x; (and x3, etc., for more di-
mensions) are separately determined by cubic polynomials in ¢. As in Theorem 2.4.2,
we find the cubic from the coordinates of the endpoints and the desired derivatives x,.’ (1)
at each endpoint.

Figure 2.30 Figure 2.31  The graph of x(t) = 1613 — 24¢% + 91,
Theorem 2.4.3 Let Py = (uy,uz,...,u,)and Py = (v}, vz, ..., v,) be any two points in R” and assume () = 412 — 41, and z(1) = —23 + 3¢2.

that the derivatives dx;/dt = x(t) are given at t =0 and ¢t = 1. Then for each x;,

there is a unique cubic function f;(t) = ag; +ay;t + az;t> + as;t> such that Py = (f,(0), P . ) ' ] )

£, .., fu(0)), Py =(fi(1), fo(1), ..., f(1)), £(0) = x/(0), and £/(1) = x/(1). Example4 The shape shown in Fl'g. 2./30 contam/s eight Hermite curves. Thg thlclk portion ?f the
curve starts at (1, 1), with x’ =3 and y’ = —3, and ends at (6, 0), withx’=0and y' = 1.
The parametric equations are x(t) = 1 4 3¢ + 9r2 — 73 and y(r) = 1 — 3r — 212 + 413,
The parametric equations for the seven other portions of the curve shown in Fig. 2.30
use variations of these two functions. e

Proof. Apply Theorem 2.4.2 witht =xandx; =y. m .

Definition 2.4.1 The parametric curve formed by the n-component functions f;(¢) in Theorem 2.4.3 is a
Hermite curve.

Example 5 Figure 2.31 shows the graph of the three-dimensional Hermite curve x(t) = 1613 —

2 2412 + 91, y(1) =412 — 4t and z(1) = =263 + 312, @
o PROBLEMS FOR SECTION 2.4
Note: Computational devices are recommended for many ¢) h defined so that it connects f and g smoothly.
204 of these problems. 3. Find and graph the following Hermite curves.
1. Recompute the two cubics of Example 3 affected Compare your result with that in Problem 2.
154 by the shift of the point (—0.1, 0.358) to the new a) x(0) = —1, x(1) =0, x(0) =1, x'(1) =1,
point (—0.1, —0.358) with a slope of 1. Compare the y(0)=—2,y(1)=1, y'(0) =2, and y'(1) = 1.
104 graphs of these cubics with the one shown in Fig. b) x(0) =1, x(1) =2, x'(0) = 1, x'(1) = 1, y(0) =
2 327& 2.4.2 to find the following cubi gl L
5] . Use he(')rem 4.2 to find the following cubic 0 x(0)=0,x()=1,x'(0) =1, x'(1) = 1, y(0) =
polynomials, and then graph them. I y(1)=—1,y'(0) =1, and y'(1) =0
iy B b ) ) ) .
4 —t + - ¢ -+ 2) f’(:)])——-l % f0)=1,£14-D=2 apd d) Give the equations for a new Hermite curve that
-3 -2 = i 2 3 =1 . ) is the mirror image in the x-axis of the one in part
Figure 2.29  Six cubics fitting the original points. b) gll)y=~1,8(2) =9 g'(1) =0, a0d g'Q2) = =1 (a).
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e) Give the equations for a new Hermite curve that
is the result of rotating the one in part (a) 180°
about the origin.

. Design and graph Hermite curves to make a curve

similar to the one shown in Fig. 2.32. [Hint: Make
the first cubic go from (1, 0) to (2,2). If the
parametric equations for this cubic are x(t) = f(t)
and y(r) = g(t), explain why the other curves are
built from =+ £ (¢) and 4g(¢).]

OIN

Figure 2.32

Repeat Problem 4 for the curve pictured in Fig. 2.33.

Figure 2.33

Suppose that you needed the curve in Theorem 2.4.2
to match given values for the second derivative at the
start and endpoints, as well as the first derivative and
heights there.

a) What degree polynomial would be needed to
satisfy all these conditions?

b) Find a polynomial f that satisfies all the condi-

tions f(0) =1, f(1) =0, o) =1, fi(1)=0,
f"(0)=—1,and f"(1) =2.

. Suppose that you improve Theorem 2.4.1 so that the

polynomial not only goes through all the points, but
also has a specified derivative at each point.

a) What would the degree of this polynomial need
to be if there are three points?

b) Find a polynomial f that satisfies all the condi-
tions f(=1)=0, f(0) =1, f(1)=2, f'(-1) =
0, f'(0) =1, and f'(1) = 0.

¢) What would the degree of this polynomial need
to be if there are n points?

- The computational time for curve fitting is an

important practical consideration. The methods of
this section involve solving a system of n linear
equations in n unknowns. Gaussian elimination, an
efficient and widely used way to solve such systems,
in general requires (n3 + 3n% — n)/3 multiplications,
which gives a good estimate of the computational
time.

a) Use Theorem 2.4.1 to find the number of multi-
plications needed to identify one polynomial that
goes through k points.

b) Repeat part (a) for the k — 1 cubics with desig-
nated slopes at these points, using Theorem 2.4.2.

¢) Repeat part (b) for k — 1 two-dimensional
Hermite curves.

d) Repeat part (c) for three-dimensional Hermite
curves.

e) Explain why you need a polynomial of degree
2k — 1 to find a curve that goes through k points
and has a specified slope at each point. Repeat
part (a) for this polynomial.

f) Compare the formulas you found in parts
(a)—(e) and the ability of these curves to fit given
conditions. How quickly does each formula grow
as k increases? (Actual designs have dozens or
hundreds of points.)

. Compare Taylor polynomials and the polynomials

of Theorems 2.4.1 and 2.4.2 as approximations for
y = sin x, as follows.

a) Find and graph from —7 to 7 the seventh-degree
Taylor polynomial for sin x centered at 0.

2.5 Higher Dimensional Analytic Geometry 85

(-5.—1), 0, 0), (5. 1) and (, 0) and have the
same derivatives as sin x at those points.

d) Graph y = sin x and compare the advamfages
and disadvantages of each of the preceding
approximations for y = sin x.

b) Find and graph the fourth-degree polynomial
described in Theorem 2.4.1 that goes through
the points (0,0), (5, 1), (=%, —1), (7, 0), and
(—m,0).

¢) Find and graph the cubic polynomials described
in Theorem 2.4.2 that connect the points (=, 0),



