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7. For each of the following equations, identify the type c) %xz +y*—x—6y+10=0.
of conic it is, determine whether it is degenerate, and d) 2x% — 3xy + yz — 4 =0. [Hint: Factor 2x2 —
sketch its graph. : ’

- 3xy + y? =0 and then explain why the factors
a) 3y°+x—2y=0. are the asymptotes.]

b) %xz +y2—x—6y4+9=0. e) x> —xy+y* — 1 =0. [Hint: Pick x-values and
find the y-values.]

2.3 FURTHER TopPicSs IN ANALYTIC GEOMETRY

The great flexibility of algebra and vectors fosters many geometric and applied varia-
tions on the analytic geometry model. We present a few here.

2.3.1 Parametric equations

Leonhard Euler introduced parametric equations in his 1748 textbook on analytic geom-
etry. Separate functions for the x- and y-coordinates allow graphs of complicated curves.
These functions, x(¢) and y(t), are in terms of a third variable, ¢, which we can think of
as representing time. The point (x(7), y(t)) traces out a curve as ¢ varies. As y does not
depend on x, the curve can double back on itself or even cross itself. We can use more
parametric equations to describe curves in three or more dimensions.

Example 1 (Calculus) For x(¢) =3 — ¢, y(t) =t — t*, and —1.1 <t < 1.1, the point (x(¢), y(2))
traces out the curve shown in Fig. 2.15. The function y(¢) controls the heights of points.
Setting the derivative y'(t) = 2t — 413 equal to 0 shows the curve to reach its maxima
and local minimum when 7 = ++/2/2 and 1 =0. e
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Figure 2.16 A cycloid.

Exercise 1 (Calculus) For which values of ¢ does the curve cross itself at (0, 0)? What happens to
the curve when x'(¢) = 0?

Example 2 A cycloid is the curve traced by a point on the circumference of a circle as the circle
rolls along a line. Find parametric equations for a cycloid for a circle of radius r.

Solution.  Let the point start at (0, 0) when ¢ = 0 and let a circle of radius 1 roll along
the x-axis. Figure 2.16 illustrates a general point on this cycloid. As the circle rolls, the
center moves along the line y = 1. When the circle has turned an angle of ¢ radians,
the center is at (¢, 1). The point rotates around the center, so its coordinates will be
(t + f(t), 1 + g(1)), for some functions f and g. From trigonometry, we get (¢ — sin t,
1 — cos 1). Note that 1 — cos ¢ = 0 only when ¢ is a multiple of 2, or when the circle
has rolled a whole number of turns. How is the equation altered if the radius isr? @

2.3.2 Polar coordinates

Jakob Bernoulli (1645-1705) developed polar coordinates, an alternative analytic model
of Euclidean geometry (Fig. 2.17a). The first coordinate of a point gives its distance
from the origin (positive or negative), and its second coordinate gives the angle made
with the x-axis. A point in polar coordinates is an ordered pair of real numbers (r, 6),
but two ordered pairs (r, @) and (r’, ") can represent the same point if (1) r = r'=0,(2)
r =r'and 6 and ¢’ differ by a multiple of 360°, or (3) r = —r’ and 6 and 6’ differ by 180°
or some odd multiple of 180°. A line in polar coordinates is a set of one of two forms:
Lines through the origin satisfy & = « for some constant «; or lines whose closest point
to the origin is (a, @) satisfy r = a sec(f — «) for constants a # 0 and o (Fig. 2.17b).
The law of cosines is used to show the distance between two points (r, ) and (a, ) is
Vr2+a? — 2ra cos(f — @), provided r and a are both positive (Fig. 2.17c).

;6
0) i (a,0)
’
6
a) Polar coordinates. b) The line with p(M ¢) Distance in polar coordinates
equation r = a sec(6 -). N2 + a2 - 2ra cos(0 - 0).

Figure 2.17



74

Chapter 2  Analytic Geometry

o | o V3
(60°, 5) (30°,3)

(90°, 0)

Figure 2.18

r =cos 6.

Example 3 The graph of r = cos 0 is the circlé shown in Fig.2.18. e

2.3.3 Barycentric coordinates

Example 4

Barycentric coordinates, devised by August Mobius in 1827, have a number of applica-
tions, including representing centers of gravity, which originally motivated Mgbius. He
later developed homogeneous coordinates in projective geometry from barycentric co-
ordinates. (See Chapter 6.) Statisticians now use them in trilinear plots, as in Example 4.

Figure 2.19 represents the election results of the 50 states and Washington, D.C. (the
star), for the three-way presidential race in 1992. (We ignore other candidates for
simplicity.) Three coordinates, the percentages, describe a state’s outcome. The star for
Washington, D.C., is at (86.3, 9.4, 4.3), the respective percentages for Clinton, Bush,
and Perot. Two of the percentages determine the third, so the information is essentially
two-dimensional. The dotted lines indicate where each candidate had a plurality. For
example, the region for the winner, Clinton, is at the top with most of the dots. No dots
are in Perot’s region, indicating that he didn’t win in any state. @

Barycentric coordinates with two rather than three options are easier to use. Sup-
pose that two points P and Q have weights w, and w, that add to 1. From Archimedes’
law of the lever, the center of mass of these two points is at point R, between P and
O, which divides their distance in the same proportion as the weights with R closer
to the heavier point. Mobius defined (w, wy) to be the barycentric coordinates of the
center of gravity of P and Q. (“Baro” is Greek for weight or heavy.) If P and Q have
equal weights, R is the midpoint with coordinates (0.5, 0.5). If P has all of the weight,
R = P =(1,0). Example 5 shows that every point between P and Q can be represented

with barycentric coordinates. Example 6 justifies extending barycentric coordinates rel-
ative to three points. This same reasoning extends to any number of points in any number
of dimensions. If the weights at the original points are «, 8, ¥, . . . and add to 1, the cen-
ter of gravity is (a, 8, v, . . .). We can extend barycentric coordinates to points outside

Example 5
P
P’ R
0 0 0
Figure 2.20
Example 6
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Figure 2.19  Trilinear plot of state and Washington, D.C., popular vote
percentages in the 1992 presidential election.

the smallest convex set containing the original points, but some of the coordinates then
will be negative.

Let AB denote the vector from A to B B and let 0 be any point not on PQ Then any
point R between P and Q satisfies OR=aOP + ,BOQ for some positive o and B
with « + 8 = 1. Then («, f) are the barycentric coordinates of R with respect to P
and Q.

Solution. In Fig. 2.20 let RP'|OQ and RQ’|O P. Then OR = 0P’+ OQ As R
is between P and Q, we can pick positive @ and B such that OR = OP’ + OQ’
aOP + ﬁOQ We need to show that « + 8 = 1. Because RP’||OQ and RQ'||OP,
Theorem 1.5.1 shows AO P Q and AP’P R are similar. Thus the sides are proportional.
Because PR=0Q'=B0OQ and OP'+ PP = OP,wemusthavea +=1. @

If S is in the interior of AP QR and O is a general point, 085=a0P + BOQ+yOR
for some positive «, 8, and y, witha + 8 + y = 1.

Solutlon Draw a plcture to illustrate this solution. Let T be the intersection of QR
and P3. By Example 5, 05=a0P +80T witha 4+ 8 =1, and o7 —KOQ +AOR
withk +A =1, and , 6, «, and A are positive. Let B =4 - k and y = § - A so that both
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are_p"ositive. Then 53:0(0—13—{-857":0155 +8(K5§+A5§)=aﬁ+ﬂ?é+
yORanda +B+y=a+8(k+A)=1. e

If each vertex of a triangle has the same weight, what are the barycentric coordinates

of the center of gravity? Explain why this center is where the medians of the triangle
intersect.

2.3.4 Rational analytic geometry

Exercise 3

We can form an analytic geometry with many algebraic structures besides the real
numbers. These other models lead to different geometries because only the real plane
R? satisfies all of Hilbert’s axioms in Appendix B. The model Q? based .on Q, the
rational numbers, loses the continuity of the real numbers. (Recall that a rational number
is the quotient p/q of two integers.) A rational point is an ordered pair (x, y), where
x,y € Q. A rational line is the set of all rational points {(x, y) : ax + by + ¢ = 0}, where
a, b, c € Q and a and b are not both zero. Other interpretations remain the same as in the
usual model, R?, and all of Euclid’s postulates still hold. However, Euclid’s construction
of an equilateral triangle, proposition I-1, does not hold in Q*. Here, WLOG, let the
given points be (0, 0) and (1, 0). Verify that the third vertex of the equilateral triangle
must be (%, :i:—2—3-). As +/3 is irrational, this vertex is not a rational point. Hence there

is no equilateral triangle in Q? and proposition I-1, among others, is independent of
Euclid’s postulates.

Explain why, if two lines with rational coefficients have a point of intersection, that
intersection is a rational point in Q2.

(See a standard calculus text, such as Edwards and Penney [5, Chapters 10 and
12] for more on parametric equations and polar coordinates. Eves [6] has more varied
information.)

PROBLEMS FOR SECTION 2.3

1. a) Explain why C = {(x,y) :x =cost, y =sin t}

a) Find the tangent vectors for C and C* in

is a circle. Compare C and C* = {(x,y) :x =
cos 2t, y = sin 2t}.

b) Graph B = {(x,y):x =cost,y =sin2t}, a
figure 8.

¢) Graph S ={(x,y):x=tcost,y=tsint,t >0},
a spiral.

d) Compare D = {(x,y):x = f(2),y = g(1),
p<t=<gqg},and D*={(x,y) :x = f(kt),
y=g(kt), p/k <t <q/k}, where k # 0.

[Hint: See part (a).]

(Calculus) The tangent vector to (x(t), y(t))
is (x'(t), ¥'(¢)). The tangent vector's length
', YOI =/ (x")2 + (y)? is the speed of the point

along the curve at time ¢. Assume that ¢ is in radians.

Problem 1(a) and compare their lengths. Explain -

b) Find the tangent vector for B in Problem 1(b).
Compare the positions of the points and the
directions of the tangent vectors when t = /2
and t =371 /2.

¢) Find the tangent vector for § in Problem 1(c).
Compare the direction and length of the tangent
vector when ¢ = 2w and when ¢ = 4. Describe
the speed of the point along the spiral § as ¢
increases.

d) Find the points and the tangent vectors for D
and D* in Problem 1(d) for t =c and t = ¢/k,
respectively. Compare these tangent vectors and-
their lengths.
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Figure 2.21

3. (Calculus)

a) Find the tangent vector (see Problem 2) of the
cycloid of Example 2 and use it to find the
velocity at r = 27 and ¢t = 7. Use your answer (0
explain why, in a photograph of a moving train,
the spokes of the wheels nearest the ground are
always in focus but the ones at the top are often
blurred.

b) Find parametric equations for a modified cycloid
similar to that in Example 2, but with the point
inside the circle at (0, k), 0 < k < 1 (Fig. 2.21).
Find the tangent vector for this curve. Compare
the velocity at t = 27t with that in part (a).

¢) Repeat part (b) with the point outside the circle
(k < 0). Graph this curve.

. Graph the curves having the following polar equa-

tions.

a) r = kO (spiral).

b) r? = cos 26 (Iemniscate of Bernoulli).
¢) r =2 sin 36 (rose).

d) r =1+ cos 6 (cartioid).

. a) Devise formulas to convert Cartesian coordinates

(x, y) to polar coordinates (r, 6) and vice versa.

b) Use part (a) to show how to write a function
in polar coordinates r = f(0) using parametric
equations with r = 6.

¢) Use part (b) to verify that r = cos € is a circle.
(See Fig. 2.18.)

d) Verify that r = a sec(6 — ), for a #0, is the
equation of a line. Find the Cartesian equation for
the line with polar equation r = +/2 sec(f — 45°).
Find the polar equation of the line having the
Cartesian equation +/3x + y + 4 = 0. [Hint: Use
Fig. 2.17b), not part (a) of this problem.]

¢) Use the law of cosines (Problem 3, Section 2.1) to
justify the distance formula in polar coordinates.
Explain how to modify that distance formula

A modified cycloid.

10.

when one or both of the points’ first coordinates
are negative.

f) Explain why polar coordinates are a model of
Euclidean geometry.

Draw a triangle AABC. Mark each of the following
points on the triangle and give its barycentric
coordinates with respect to A, B, and C: the
midpoints of each side, the intersection of the
medians, and the points A, B, and C. Mark the point
in the triangle having the barycentric coordinates
(0.25,0.25, 0.5).

. Let X =(1,0), Y = (0, 1), and O = (0, 0). Explain

why a point with Cartesian coordinates (o, ) has
barycentric coordinates («, B, 1 — a — B) with
respect to X, ¥, and O.

. Only a few of Hilbert’s axioms (Appendix B) are

false in the model Q?. Find them and explain why
each fails in this model.

. Consider the analytic geometry model Z?, where Z

is the set of integers. Give suitable interpretations
for Hilbert’s undefined terms. Which of Hilbert’s
axioms (Appendix B) are true in the model Z2?

Assign coordinates to the points on a sphere, using
their longitudes and latitudes (Fig. 2.22). Thus (x, y)
represents a point, provided that —90° <y < 90°.
Every point (x, y) has multiple representations, such
as (x +360°, y).

Figure 2.22  Coordinates on a sphere.
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a) Describe all coordinates for the north and south
poles.

b) Describe the curves on the sphere for y = a and
x=b.

¢) Describe the curves on the sphere for y =
mx +b.

d) If you interpret point as a point on the sphere
and line as any of the curves of parts (b) and
(c), which of Hilbert’s axioms from group I
(Appendix B) are true? Explain.

Assign coordinates to the points on the surface of
a torus (a doughnut) using longitude and latitude

measured in degrees (Fig. 2.23). Every point (x, y)
has multiple representations, such as (x -+ 360°,

y + 720°). Interpret point as a point on the surface
of a torus and line as the set of points satisfying an
equation of the form ax + by + ¢ = 0.

Figure 2.23  Coordinates on a torus.

a) Find values of a, b, and ¢ so that the line
ax + by + ¢ = 01is finitely long. Find other values
so that that line is infinitely long.

b) Find a line that intersects n times with y =0.

Find a line that intersects y = 0 infinitely many
times.

¢) Which of Hilbert’s axioms in group I and IV
(Appendix B) hold in this model? Explain.

12. Taxicab geometry is an alternative analytic model
. with a distance function corresponding to the

distances taxicabs travel on a rectangular grid of
streets. The taxicab distance between A = (a, b)
and § = (s,1) is dr(A, S) =|a —s| + |b —1].
This geometry has quite different properties from
Euclidean geometry. (See Section 1.4.)

a) How are two points that have the same Euclidean
and taxicab distances related? If these distances
are different, which is larger? If the smaller
distance is 1, how large can the other distance
be? Explain and illustrate.

b) A taxicab circle is the set of points at a fixed
taxicab distance from a point. Describe taxicab
circles. What are the possible types of intersec-
tion of two taxicab circles? Illustrate each.

¢) A taxicab midpoint M of A and B satisfies
dr(A, M) =dr(M, B) = 3dr(A, B). lllustrate
the different sets of midpoints two points can
have.

d) The taxicab perpendicular bisector of two points
comprises of all points equidistant from the two
points. Describe and illustrate the different types
of taxicab perpendicular bisectors.

e) In the plane find four points whose taxicab
distances from each other are all the same.

13. Another distance formula on R? uses the maximum

of the x and y distances: For A = (a, b) and
S=(s,1),du(A,S) = Max{la —s|, |b —t|}. Redo
Problem 12, using d.

2.4 CuRrvVES IN COMPUTER-AIDED DESIGN

Computer graphics depend heavily on analytic geometry. The computer stores the co-
ordinates of the various points and information about how they are connected. The
easiest connections are line segments and arcs of circles, which are easily described
with elementary analytic geometry. However, connecting a series of points smoothly re-
quires calculus and more advanced techniques, which we discuss briefly in this section.
Computer-aided design (CAD) uses polynomials—a flexible and easily computed fam-

ily of curves. For a sequence of points, we need a curve or a sequence of curves that
smoothly passes through the points in the specified order. A simplistic approach finds
one polynomial through all the points, as in the first two examples.




