10.

f) Vary this second approach to find the tangent to
y = 4x — x* parallel to y = 6x.

g) Discuss any logical and practical shortcomings
of this method.

. a) Graph the following functions and decide which

enclose a convex region of the plane: y = x2,

y=x—x%y=x3 y=x% y=¢* y=sinx,
and y =In x.

b) Functions f that satisfy f((a + b)/2) < (f(a) +
f(b))/2 for all a and b are called convex
functions. Which of the functions in part (a)
are convex functions? How do convex functions
compare with functions that enclose a convex
region of the plane? To explain the difference
between these uses of convex for functions,
define concave functions. Explain how concave
functions relate to functions enclosing a convex
region.

¢) (Calculus) Find the second derivative of the
functions in part (a). What is special about the
second derivative of the convex functions? Use a
graph to explain how the definition of a convex
function fits with what you found out about the
second derivatives of convex functions. What
can you say about the second derivative of the
concave functions you defined in part (c)?

The arithmetic of complex numbers (C) has a
well-known geometric interpretation in RZ. The
complex number a + bi can be represented as the
point, or vector, (a, b) in the plane. Addition of
complex numbers corresponds to vector addition:
(a+bi)+(c+diy=(a+c)+ (b+di.

2.2 Conics AND Locus PROBLEMS
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a) Explain and illustrate on Cartesian axes why this
addition satisfies the parallelogram law.

b) The complex conjugate of a + bi is the number
a — bi. Illustrate on Cartesian axes how these
numbers are related geometrically.

¢) The modulus of a + bi is the real number
Va? + b2. What does the modulus tell you
geometrically?

The formula for complex multiplication, (a + bi) x

(¢ +di) = (ac — bd) + (ad + bc)i, doesn’t reveal

the geometry.

a) How does the product of a complex number
and its conjugate relate to the modulus? (See
Problem 10.)

b) Illustrate with several examples on Cartesian
axes the result of multiplying a + bi by a real
number r + 0i. What corresponds geometrically
to multiplying by a real number?

¢) Illustrate on Cartesian axes the result of multi-
plying a + bi by i, a complex number on the
unit circle. Also illustrate the result of multiply-
ing a + bi by 0.6 + 0.8/ and by —0.96 + 0.28i,
other points on the unit circle. What do you think
multiplication by a point on the unit circle does
geometrically to a + bi?

d) Explain why any complex number ¢ + di can
be written as the product of its modulus with
a complex number x + yi on the unit circle
(for which x% + y? = 1). Use parts (b) and (c)
to describe what multiplication by a general
complex number ¢ + di does geometrically to
a+ bi.

The Greeks identified and studied the three types of conics: ellipses, parabolas, and
hyperbolas. However, nearly two thousand years passed before the first of many appli-
cations of conics outside of mathematics appeared. We call these curves conics because
they are the intersections of a (double-napped) cone with planes at various angles (Fig.
2.6). To find the familiar equations of these curves we use an easier characterization
based on distance. The process of finding a set of points or its equation from a geomet-
ric characterization is called a locus problem. See Eves [6] for further information on

these topics.

Example 1
lines.

Find the set (locus) of points P such that P is the center of a circle tangent to two given
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Definition 2.2.1

Figure 2.6  The intersection of a plane and a cone is (a) an ellipse, (b)
a parabola, or (c) a hyperbola.

Solution.  If the two lines are parallel, then a circle tangent to both must have its center
on the line midway between these two lines. If the two lines intersect at a point Q, then
the centers of circles tangent to both lines must be on one of the two angle bisectors of
these two lines. Illustrate these two cases. @

Given two points F" and F’, an ellipse is the set of points P in the plane such that the sum
of the distances of P to F and F” is constant. Given two points F and F’, a hyperbola is
the set of points P in the plane such that the difference of the distances from P to F and
F'is constant. Given a line m and a point F not on m, a parabola is the set of points P in
the plane such that the distance of P from F equals the distance of P from m. The points
F and F' are called foci. The line m is called the directrix. (Figs. 2.7, 2.8, and 2.9.)

Figure 2.7  An ellipse.
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PIERRE FERMAT

Although a lawyer and political councilor by profession, Pierre Fermat (1601?-1665) is
best remembered for the mathematics he pursued in his spare time. He corresponded
extensively with other mathematicians, rather than seeking publication. Indeed, his work
in analytic geometry, even though done before Descartes, wasn't published until after
Fermat died. He investigated the shapes of curves from their equations. This approach
complemented Descartes’s work, as Descartes had emphasized finding the equation

of a curve defined by some geometric process. Fermat explicitly discussed first- and
second-degree equations and explored many new curves with higher degree equations.

Fermat also contributed extensively and profoundly to number theory. He is best
known for Fermat's last theorem: a" + b" = ¢" has no nontrivial integer solutions if
n > 2. This statement holds the record for the greatest number of incorrect published
“proofs,” but Andrew Wiles finally proved it 1994. This simple-looking statement has
led to extensive and profound investigations in number theory. Fermat’s theorems in
number theory concentrate on primes, divisibility, and powers. For example, Fermat’s
little theorem, an important tool in abstract algebra and coding theory, states that if a is
not a multiple of a prime p, then p divides a?~! — 1.

Other areas of mathematics also benefited from Fermat’s creativity. The founding of
probability as a mathematical subject grew out of letters between Fermat and Blaise Pascal.
They corresponded at some length and eventually solved a problem on how to distribute
fairly the wagers of an interrupted game of chance. Fermat was an important precursor
of calculus with his method for finding maxima and minima. In addition, he understood
the rules that we now describe as differentiating and integrating polynomials.

Figure 2.8 A hyperbola. Figure 2.9 A parabola.
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Exercise 1

Example 2

Exercise 2

Exercise 3

Example 3

Analytic Geometry

Construct an ellipse as follows. Fix the two ends of a piece of string tc different points

on a piece of paper. Place a pencil on the paper so that it holds the string taut. Explain
why the pencil sweeps out an ellipse as it moves.

Find the equation of an ellipse.

Solution. 'WLOG, let the foci F and F’ have coordinates (f,0) and (—f,0). Let

P = (x, y) be any point on the ellipse. The definition of an ellipse gives the following
equation, which we adjust to a more familiar form.

\/(x —f)2+y2+\/(x+f)2+y2=k.
The sum of the distances is k > 2 f.

VE— 2+ =k—\Jc+ 2+ 2,

Square both sides and simplify.
X =2fx+ P4y =k =2k + [V X2+ 2 x4 24y

—4fx —k® = —2k\/(x + £)2 + y2

Square again and simplify.
16 £2x% + 8 fxk? 4+ k* = 4k2(x + 2fx + f2 4 y).
x2(16 2 — 4k?) — 4k%y? = K2(4 £ — k).

Divide by the right side.

4x2 4y2
— 4+ =1
K2 (2 —4f7)
We can rewrite this equation as
x? 2
oA Ak
because k? — 4 f2 > 0. The diameters of the ellipse along the x and y-axes are 2a and
2b, respectively. @

Verify that a circle satisfies the definition of an ellipse.

Outline a parabola, as indicated in Fig. 2.10. Fix a pin and a ruler on a piece of paper.
Then place a right angled triangle or piece of paper with its right angle on the ruler and
one leg touching the pin. Draw a line using the other leg. Move the triangle to draw
different tangents to the parabola. Note that the ruler is not the directrix. (See Broman
and Broman [2] for other constructions and an explanation.)

The equation of a hyperbola is x2/a? — y?/b? = 1, and the equation of a parabola is
2
y=ax?

Solution. See Problem 2. e

Example 4

Example 5
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Figure 2.10

Examples 2 and 3 give the equations of the conics when we pick the easiest starting
conditions. Less convenient conditions make the algebra more difficult and the final
equation more complicated. The general equation of a conic is ax? + 2bxy + cy? +
2dx + 2ey + f = 0. The conic is an ellipse, parabola, or hyperbola, depending on
whether ac — b is positive, zero, or negative, respectively. (Circles are special ellipses
with a = ¢ and b = 0.) However, some of these general second-degree equations are
degenerate: that is, they are equations for one or two lines or a point or even the empty
set. The locus is a conic provided that the determinant of

a b d
b ¢ e
d e f

is nonzero.
If we pick F = (%2, 52), F/= (=2, L) and k =22, as shown in Fig. 2.11,
the ellipse has the equation 3x? + 1xy + 3% = 1. Note that ac — b* = (3/4)(3/4) —
(1/4)(1/4) = 1/2 > 0 and that the determinant is —1/2. e

Use calculus to show the reflection property of the parabola: All rays from the focus are
reflected by the parabola in rays parallel to the axis of symmetry of the parabola.

Solution.  Turn the parabola horizontally, as shown in Fig. 2.12, and use calculus and
trigonometry. Verify that the parabola y = 4-+/4kx has focus F = (k, 0). For any point
P = (x, v/4kx) on the upper half of the parabola, show that the slope of the line from
F to P is «/4kx/(x — k) and that the slope of the tangent line at P is v/k//x. The
reflection property says that the angle between these two lines equals the angle between
the tangent line and a horizontal line. The slopes are tangents of the various angles.
Recall that
tan ¢ — tan

. (e — B = T e an gy’
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Figure 2.11  The ellipse 3x* + Jxy + 3y? = 1.

Figure 2.12  The reflection property of a parabola.

If tan @ = v/4kx/(x — k) and tan(8) = v/k/./x, the right side of the formula for
tan(aw — B) simplifies to +/k/./x. It is the tangent for the angle between the tangent
line and the horizontal line. Why is the lower half similar? The design of satellite disks
makes use of this process in reverse: The disks take incoming parallel rays and focus

them on one point. @

PROBLEMS FOR SECTION 2.2

1.

a) Find the locus of points in the plane equidistant
from two points.

b) Find the locus of points on a sphere equidistant
from two points.

¢) Find the locus of points in space equidistant from
two points. Relate this answer to your answers in
parts (a) and (b).

d) Repeat parts (a), (b), and (c) for three non-
collinear points.

2. a) Derive the equation of a hyperbola.

b) Derive the equation of a parabola. [Hint: Use
y = —k for the directrix and (0, k) for the focus.]

3. a) Attach one end of a string to a ruler and fix the

other end to a sheet of paper. Hold the ruler and a

pencil as indicated in Fig. 2.13. As you slide the
ruler back and forth, while keeping the string taut
with the pencil, the pencil will trace out a curve.

Identify which conic is created and explain why
it is that conic.

Figure 2.13

b) On wax paper or tracing paper draw a large circle
and mark its center C and any other point A
inside the circle. For various points P on the
circle, fold and crease the paper so that points A
and P coincide. The set of creases will outline an
ellipse. Use the definition of an ellipse together
with Fig. 2.14 to explain this result. Note that O
is a point on the ellipse. .

¢) Repeat part (b) with point A outside the circle.
Modify Fig. 2.14 and explain this result.

. a) Graph y = Xl the most familiar equation for a

hyperbola.

b) Rewrite this equation in the general form of
a conic, verify that ac — b* < 0 and that the
determinant is nonzero.

¢) Verify that the foci of this hyperbola are at

(v2,+/2) and (=2, —V/2).

. (Calculus) Every hyperbola has two asymptotes, or

lines that the curve approaches but never intersects.
A line y = mx + b is an oblique asymptote of a
function y = f(x) provided that limy_, +o f(x) —
(mx + b) =0.
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a) Verify that the hyperbola (x?/a?®) — (y*/b?) =1
has asymptotes y = (b/a)x and y = —(b/a)x.
Show that the product of these two linear
equations when rearranged gives a degenerate
conic. _

b) Use calculus to find the asymptotes of the
hyperbola y = x + (1/x). Verify that when you
write this hyperbola’s equation in the general
form of a conic, ac — b* <0 and that the
determinant is nonzero.

¢) Verify that all hyperbolas y = x + (k/x), k # 0,
have the same asymptotes as the hyperbola in
part (b). Graph two hyperbolas, one with k > 0
and one with k <0, on the same axes with
the asymptotes. How does changing k change
the graph? Show that every point not on the
asymptotes is on just one of these hyperbolas.

. Find and describe the locus of points P whose

distance from a fixed point F is k times their distance
from another fixed point F'. [Hint: Let F = (k, 0)
and F' = (-1, 0). Consider the case k = 1 separately
from other k > 0.]

Figure 2.14
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4. For each of the following equations, identify the type
of conic it is, determine whether it is degenerate, and
sketch its graph.

a) 1y?+x—2y=0.
b) }—‘x2+y2—x—6y+9=0.

© Ixl4+yt-x—6y+ 10=0.

d) 2x2 — 3xy +y* —4 = 0. [Hint: Factor 2x2 —
3xy + y? =0 and then explain why the factors
are the asymptotes.]

e) x2—xy+ y? — 1 =0. [Hint: Pick x-values and
find the y-values.]



