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Analytic Geometry

Computer
graphics have greatly changed the designing of products. Eye-catching
pictures and computing prowess easily attract attention, but the
mathematics behind the pictures deserves fuller understanding.
Analytic geometry helps represent the curves needed for a lawn mower
part, an airplane, and other shapes. Transformational and projective
geometries, the topics of Chapters 4 and 6, are the keys to enabling the
computer show different views of a shape, including perspective.
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Chapter 2 Analytic Geometry

Though the idea behind it all is childishly simple, yet the method
of analytic geometry is so powerful that very ordinary [youth)]
can use it to prove results which would have baffled the greatest
of the Greek geometers—Euclid, Archimedes and Apollonius.
—E. T. Bell

How can it be that mathematics, being after all a product of
human thought independent of experience, is so admirably
adapted to the objects of reality? —Albert Einstein

2.1 OVERVIEW AND HISTORY

The fruitful union of algebra and geometry called analytic geometry has become an
indispensable tool for mathematicians, scientists, and those in many other fields. Al-
though René Descartes and Pierre Fermat deserve credit for creating analytic geometry,
many others before and after shared in its development. (See Boyer [1].) After 150
B.C., Greek astronomers used coordinates to describe the positions of stars, and Greek
and Roman geographers used coordinates to describe places on earth. In the fourteenth
century Nicole Oresme used some examples of graphic representation. Arab and Re-
naissance mathematicians developed algebra into a powerful language. Frangois Viéte
(1540-1603) used letters to represent unknown values and general situations. Viéte
called his approach analysis, following the ancient Greeks’ meaning of the word. He
started by assuming that the given problem had been solved and used a letter to repre-
sent this answer, which he then found algebraically in the modern sense. However, Viéte
retained the Greek limitation of adding only like quantities. Thus, in modern notation,
Viete would be willing to add O+ a2x, but not x3 + ax, because the latter expression
would represent a volume added to an area.

Pierre de Fermat (1601-1665) united the notational advances of Viete’s algebra
with traditional geometry. He realized that first- and second-degree equations corre-
spond to lines and conics and investigated curves defined by higher degree equations.
He solved some questions now considered part of calculus, such as finding maxima and
minima. Although Fermat developed analytic geometry first, René Descartes (1596—
1650) published sooner and was more influential. Descartes freed algebraic notation
from Viéte’s restrictions of homogeneous dimensions. His famous book Geometry, pub-
lished in 1637, showed the power of this new field, solving problems the Greeks had
been unable to answer. Mathematicians began investigating the tremendous variety of
curves suddenly described by algebraic equations. However, Descartes’s book doesn’t
look like analytic geometry to us, for he didn’t use coordinates and axes. Rather, he
described the length of a line segment in terms of relationships of the lengths of var-
ious other line segments and translated these relationships into an algebraic equation.
Nevertheless, we often call these coordinates Cartesian in honor of Descartes (and to
distinguish them from other coordinate systems, such as polar coordinates).

During the first century of analytic geometry—and the early years of calculus—
mathematicians didn’t realize the power and simplicity of functions. Curves such as
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RENE DESCARTES

René Descartes (1596-1650) won acclaim in philosophy, as well as in mathematics. In
his most famous work, the Discourse on the Method, he tried to show how his rational
approach could lead to new knowledge in any domain. He started by doubting everything
that he did not know evidently to be true. His famous statement, “I think, therefore I am,”
was his first principle of philosophy, the idea that withstood all of his doubting. Next, he
sought to reduce each difficulty he studied into many simpler parts and approach these
parts systematically and exhaustively. This method may not seem revolutionary now,
but Descartes was challenging traditional learning handed down for centuries. Descartes
illustrated his method in three essays— Optics, Geometry, and Meteorology—that followed
the Method. Of these, Geometry was by far the most influential.

In the first part of Geometry, Descartes showed how to solve a number of problems,
including one that the Greeks had been unable to solve. He translated the geometric
descriptions of curves into algebraic equations that he could then solve. In the second
part, he provided a method of finding tangents to curves and attempted to classify curves.
In the third part, he investigated the theory of equations, including his own rule of signs,
giving a bound on the number of positive roots and what we call negative roots of a
polynomial equation. (Descartes would have said that the equation x +5=0has 5 as a
false root, rather than a root of —5.) (See Boyer [1] and Grabiner [7] for more on Geometry.)

Descartes intentionally wrote obscurely, making it difficult for others to extend
his work. However, later editions of Geometry contained commentaries by others that
explained his work, revealing the power of his method. The success of analytic geometry
in posing and solving important problems has made it indispensable in mathematics. Of
course, calculus depends crucially on analytic geometry, and it is no accident that so little
time elapsed between Descartes’s pioneering work in 1637 and the advent of calculus in
the 1660s and 1670s.

the folium of Descartes, shown in Fig. 2.1, were tackled as were more familiar curves
such as the one shown in Fig. 2.2. Leonhard Euler (1707-1783), the most prolific
mathematician of all time, emphasized functions and recast analytic geometry and

calculus in nearly modern form in his influential textbooks.

Mathematicians have continued to develop analytic geometry and extend it into
new branches of mathematics. In the nineteenth century mathematicians used analytic
geometry to overcome visual limitations and investigate four and more dimensions.
Transformational geometry and differential geometry grew out of analytic geometry,
as well as areas no longer thought of as geometry, such as linear algebra and calculus.

The advent of computer graphics has renewed the interest in analytic geometry.

2.1.1 The analytic model

We make the connection between geometric concepts and their algebraic counterparts
explicit by building a model of geometry in algebra. The familiar graphs of analytic
geometry are not actually part of the model, but they make the model and its many
applications understandable. Geometric axioms and theorems become algebraic facts to

be verified. In turn, algebraic equations and relations can be visualized.
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Figure 2.1  Folium of Descartes, x3 — 2xy + y3 = 0. Figure2.2 y= %x3 + 4x. ' Case 2 xy 7 xp. Verify (y2 — y1/xo —x)x —y+y1— (y2—y1/x2—xp)x; =0isa
line on both points. As in case 1, verify that a line ax + by + ¢ = 0 on both points is a
multiple of the line given in this case. o
[ £ Part of analytic geometry’s power comes from our ability to solve geometric prob-
Interpretation In the plane R?, by point we mean an ordered pair of real numbers (x, y). By line lems with algebra and to understand abstract algebraic expressions geometrically.
we mean a set of points of the form {(x, y) : ax + by + ¢ = 0}, for a, b, c € R with
a and b not both 0. A point (4, v) is on the line {(x, y) : ax + by + ¢ =0} iff au + Example 2 Show that the medians of a triangle intersect in the point two-thirds the way from a
i?/v +e= ;) The dtstaznce between two points P = (x, y) and Q = (u, v) is d(P, Q) = vertex to the opposite midpoint.
(x —u)*+ (y — v)2.
d ) Solution. 'WLOG, pick the axes so that the vertices of the triangle shown in Fig. 2.3
Remarks  As usual, we identify a line by its equation. Two lines ax + by + ¢ = 0 and are (0, 0), (a, 0), and (b, ¢). Verify that the midpoints of the three sides are (5, 0),
mx + ny + p = 0 are the same provided ‘that there is a nonzero real number k such that (’i’, $), and (# 5). The medians connect midpoints to opposite vertices. Verify
fzk =m, bk =n, and ck = pl The equation for the distance between two points given that the medians are y = (c¢/(a + b))x, y = (¢/(b — 2a))x — ac/(b — 2a) and y =
in the preceding mte'r[.)retatlon is in essence the Pythagorean theorem—now no longer a (2¢/(2b — a))x — (ac/(2b — a)). Verify that (“—;—rﬁ, 5) is on all these lines and two-
theorem, but a definition. thirds the distance from each vertex to the opposite side. @
(See Boyer [1] for more on the history of analytic geometry and Eves [6] for more
Exercise 1  Find the slope and y-intercept of the line ax + by + ¢ =0, if b % 0. (When b = 0, the on the model.)
line is vertical and has no slope. If a and b are both 0, either no points or all points
satisfy the equation ax + by + ¢ =0.) PROBLEMS FOR SECTION 2.1
In these problems you may use familiar properties of ¢) Use analytic geometry to find the set of all
Example 1  Verify that, for any two distinct points, there is only one line on both points. (This result geometry and analytic geometry such as: Nonvertical mlde} GHBESEERICALS (ot lenpu I yiicee
shows that Hilbert's axioms I-1 and I-2 hold in this model.) parallel lines have the same slope. endpoints are on the x- and y-axes.
h . o ) 1. a) Guess what curve the midpoint of a ladder makes d) Explore what happens in part (b) if the corner
Verification.  Let (x1, y1) and (x3, y2) be any two distinct points. as the top of the ladder slips down a wall and the of the paper doesn’t form a right angle or if you
o . | : g bottom of the ladder moves away from the wall. pick a point on the ruler other than the midpoint.
(:‘ase 1 x; =x3. The llqe x — x1 =0 is on both points. Let ax + by + ¢ = 0 be any Evaw: a diagoans, PO e
line through these two points. Then ax; + by; + ¢ =0, and ax; + by; + ¢ = 0. These . yie g Y

b) Model the situation in part (a) with a ruler and a midpoints of any quadrilateral always form a
corner of a sheet of paper, marking the various parallelogram.
midpoints of the ruler on the paper.

equations reduce to b(y; — y2) = 0. For the points to be distinct, y; — y, # 0. So b =0,
which forces ¢ = —ax). Thus ax + by + ¢ = 0 is a multiple of x — x; = 0, showing that
only one line passes through these two points.
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Chapter 2  Analytic Geometry

Use analytic geometry to verify the law of cosines:
¢ = a? 4 b — 2ab cos(C) (Fig. 2.4).

i

Figure 2.4 Law of cosines,
c2=a%+b*—2abcosC.

Ver.ify Hilbert’s axiom IV-1 (Appendix B): Through
a given point P not on a given line k there passes at
most one line that does not intersect k.

Define a circle in analytic geometry and verify
Euclid’s postulate 3 (Appendix A): To describe a
circle with any center and radius.

. For many applications, the use of different scales on

the x- and y-axes is convenient (Fig. 2.5). Suppose
that on the x-axis a unit represents a distance of k
and on the y-axis a unit represents a distance of j.
Explain why the equations of lines in this model
have the same form as in the usual model. Develop
a formula in this model for the distance between
two points, P = (x1, y1) and Q = (x2, y2). Give the
equation of a circle of radius r and center (a, b).

7. (Calculus) Before the advent of calculus, Fermat

developed a method for finding the maximum or

minimum of certain formulas, such as bx? — x3.

He reasoned first that if two values of x, say,

u and v, give the same height, he would get

bu? — u? = bv? — 3,

a) Verify that this equality reduces to b(u + v) =
u® + uv + v2, foru # .

b) Explain Fermat’s reasoning that at a maximum
(or minimum) for the formula the two x-values
are equal. Replace v in part (a) with u and
simplify to get u = %b. Verify, using calculus,
that this value does indeed give a (relative)
maximum for the function y = bx? — x3. (Fermat
didn’t consider negative numbers or zero as
answers.)

¢) Use Fermat’s algebraic approach to find the (rela-
tive) maximum and minima for x* — 262x2 4 p*
Use calculus to verify that these values are
correct.

d) Explain any logical shortcomings of Fermat’s
approach.

e) Explain the practical shortcomings of Fermat’s
method, by using cos(x) — x.

. (Calculus) Most lines that intersect a curve do so

in two (or more) places, say, a and b. When you
solve the system of equations for the line and the
curve, they reduce to (x — a)(x — b)k = 0, where
k represents any other factors. However, tangents
have a “double root” at the point of tangency: The
system of a curve and its tangent line at a reduces to
(x —a)(x — a)k = 0. You can use this idea to find
tangents without calculus. First, find the tangent to
y=x%*—xat(22).

a) Verify that the equation of a general line through

10.

f) Vary this second approach to find the tangent to
y = 4x — x? parallel to y = 6x.

g) Discuss any logical and practical shortcomings
of this method.

a) Graph the following functions and decide which
enclose a convex region of the plane: y = 2,

y=x—x%y=x} y=x% y=¢ y=sinx,
and y =Inx.
b) Functions f that satisfy f((a +b)/2) = (f(a) +

f(b))/2 for all a and b are called convex
functions. Which of the functions in part (a)
are convex functions? How do convex functions
compare with functions that enclose a convex
region of the plane? To explain the difference
between these uses of convex for functions,
define concave functions. Explain how concave
functions relate to functions enclosing a convex
region.

¢) (Calculus) Find the second derivative of the
functions in part (a). What is special about the
second derivative of the convex functions? Use a
graph to explain how the definition of a convex
function fits with what you found out about the
second derivatives of convex functions. What
can you say about the second derivative of the
concave functions you defined in part (c)?

The arithmetic of complex numbers (C) has a
well-known geometric interpretation in R?. The
complex number a + bi can be represented as the
point, or vector, (a, b) in the plane. Addition of
complex numbers corresponds to vector addition:
(a+bi)+(c+di)=(a+c)+ (b+di.

11.
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a) Explain and illustrate on Cartesian axes why this
addition satisfies the parallelogram law.

b) The complex conjugate of a + bi is the number
a — bi. Tllustrate on Cartesian axes how these
numbers are related geometrically.

¢) The modulus of a + bi is the real number
aZ + b2. What does the modulus tell you

geometrically?
The formula for complex multiplication, (a + bi) %
(¢ 4+ di) = (ac — bd) + (ad + bc)i, doesn’t reveal
the geometry.

a) How does the product of a complex number
and its conjugate relate to the modulus? (See
Problem 10.)

b) llustrate with several examples on Cartesian
axes the result of multiplying a + bi by a real
number r + 0i. What corresponds geometrically
to multiplying by a real number?

¢) Illustrate on Cartesian axes the result of multi-
plying a + bi by i, a complex number on the
unit circle. Also illustrate the result of multiply-
ing a + bi by 0.6 + 0.8 and by —0.96 + 0.28i,
other points on the unit circle. What do you think
multiplication by a point on the unit circle does
geometrically to a + bi?

d

~

Explain why any complex number ¢ + di can
be written as the product of its modulus with
a complex number x + yi on the unit circle
(for which x2 4+ y2 =1). Use parts (b) and (c)
to describe what multiplication by a general
complex number ¢ + di does geometrically to
a -+ bi.

2.2 Conics AND Locus PROBLEMS

8 2.5) (2,2)is y=mx — 2m + 2. .

; b) Substitute mx — 2m + 2 for y in y = x? —x and The Greeks identified and studied the three types of conics: ellipses, parabolas, and
4 find x in terms of m with the aid of the quadratic hyperbolas. However, nearly two thousand years passed before the first of many appli-
formula. cations of conics outside of mathematics appeared. We call these curves conics because
b : : 3 — ¢) Which value of m in part (b) gives one value they are the intersectif)r_\s of a (dlouble—napped) cone with planes at Yarious angle.s (Eig.
-2 -l 1 2 3 4 of x (a double root)? [Hint: Consider what is 2.6). To find the familiar equations of these curves we use an easier characterization
_4 under the /=) Use this m to find the tangent’s based on distance. The process of finding a set of points or its equation from a geomet-
equation.) ric characterization is called a locus problem. See Eves [6] for further information on

g d) Use calculus to verify your answer in part (c). these topics.

e) Vary the preceding approach to find the two ) . . . .

Figure 2.5 tangents to y = x> — 2x + 4 through the point Example 1  Find the set (locus) of points P such that P is the center of a circle tangent to two given

(0, 0). Graph this parabola and these tangents. lines.




