1.6 THREE-DIMENSIONAL GEOMETRY

Although we live in a three-dimensional world, visualizing three-dimensional geometric
figures is harder than visualizing two-dimensional figures. We explore nonaxiomatically
the geometry of polyhedra (the plural of polyhedron) and the sphere to help you deepen
your visual intuition. Working with physical models aids this understanding beyond
what any textbook figures can do.

1.6.1 Polyhedra

Polyhedra continue to fascinate people, much as they did the ancient Greeks. We assume
an intuitive understanding of a polyhedron because an exact definition is more compli-
cated than our treatment warrants. (See Lakatos [20].) In brief, a polyhedron is com-
posed of vertices, edges, and faces. The faces are polygons. At each vertex (or corner)
at least three faces meet, and at each edge (line segment) two faces meet.

Pyramids are easy to visualize, and all polyhedra can be dissected into pyramids,
much as all polygons can be dissected into triangles. A pyramid has a polygon with
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n edges.for its base, one more vertex not in the plane of the base called the apex
and n triangular faces that are determined by the apex and the n edges of the base’
The polyhedron with the fewest vertices, edges and faces .

is a triangul i
tetrahedron, shown in Fig. 1.42. ARgHNaY pyraud or

Verify that a pyramid with an n-gon for a base has V = n i
=n + 1 vertices, E =
and F =n + 1 faces. Sl 2n edges,

Use calculus to find a formula for the volume of a pyramid.

Solution. WLOG select a coordinate axis so that the origin is at the apex of the
pyramid and the x-axis is perpendicular to the base (Fig. 1.43). Suppose that the area
of the base is B and that the x-coordinate of points on the base is # > 0, the height of
tl?e pyramid. Any cross section of the pyramid in a plane parallel to the base is a polygon
similar to the base. If a cross section’s x-coordinate is x, then Problem 12 of Section 1.5
shows its area to be (x/h)2B. Thus the volume of the pyramid is

h 2 h .2 3 h
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Figure 1.43
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Tetrahedron Cube Octahedron

Dodecahedron Icosahedron

Figure 1.44  The regular polyhedra.

Modify Example 1 to find the formula for the volume of a cone.

Explain how, in principle, you can use pyramids to find the volume of any polyhedron.

The five polyhedra shown in Fig. 1.44 possess regular properties and a high degree
of symmetry. These regular polyhedra are often called the Platonic solids because the
Greek philosopher Plato was fascinated by them and his discussion of them is the oldest
that survives. A convex polyhedron is regular provided that all its faces are the same
regular polygon and the same number of polygons meet at each vertex. (See Coxeter [5,
Chapter 10] for more information.)

The noted Swiss mathematician Leonhard Euler (1707-1783) developed a formula
relating the number of vertices, edges, and faces for a large collection of polyhedra,
including all convex ones. Because a careful proof, even for convex polyhedra, would
require an overly long and technical development, we don’t present one here. (See
Beck et al [2] and Lakatos [20].) Euler’s Formula has a wide variety of applications
in geometry, graph theory, and topology.

Find the number of vertices, V, edges, E, and faces, F, for the regular polyhedra in
Fig. 1.44.
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Figure 1.45 A polyhedron with 7 vertices, 13 edges, and 8 faces.

Theorem 1.6.1

Example 2

Theorem 1.6.2

Figure 1.46

Euler’s Formula If a convex polyhedron has V vertices, E edges and F faces, then
V~E+F=2,

Outline of Reasoning.  Given a convex polyhedron (Fi 8. 1.45) we can stretch the net
of its vertices and edges to lay it out on a plane (Fig. 1.46). The number of vertices and
edges remains the same, but the number of faces is one less than the original polyhedron.
Next, if a face of this net is not a triangle, we divide it into triangles by adding edges.
A technical argument shows that this division. can always be made and that doing so
increases the number of faces and edges the same amount. Another argument shows
that we can carefully eliminate edges one at a time, each time eliminating either a face
or a vertex. Thus we preserve the value V — E + F. (Try this process with Fig. 1.46.)
In the end, we are left with a triangle, for which wehave V — E + F =3 —3 4+ 1 = 1.
Thus the original polyhedron must satisfy Euler’s formula. m

The angle sum of all the angles of a tetrahedron is 4 x 180° = 720° because a tetra-
hedron has four triangles for faces. Similarly the six square faces of a cube give an
angle sum of 6 x 360° = 2160°. A simple formula for the angle sum of all convex
polyhedron depends on shifting our focus from the faces to the vertices, as Descartes
discovered. ®

Descartes’s Formula If a convex polyhedron has V vertices, then the angle sum of
all of the angles around all the vertices is 360°(V — 2).

Proof. We derive this result from Euler’s formula. We rewrite V — E + F=2as
V —2=E — F. Note that the left side multiplied by 360 is Descartes’s formula:
360°(V — 2) =360°(E — F) = 180°(2E — 2F). Next we relate the right side to the
angle sum.

Let F; be the number of faces with i edges on them; for example, F3 is the
number of triangles. The number of faces is F = F3 + Fy + Fs + - - - = 223 F;. (Of

Exercise 5
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Figure 1.47

course, for a given polyhedron, the sum isn’t infinite.) Figure 1.47 illustrates that a
convex face with i edges has i — 3 diagonals from a vertex, dividing the face into ; — 2
triangles. By Theorem 1.1.1 and induction, a face with i edges has an angle sum of
180°(i — 2). Thus the total angle sum is Zf’i; F;180°(i — 2). We can also count the
number of edges in terms of the F;. However, Y o4 i F; is too big, as each edge is on
two faces and so is counted twice. Therefore 2E = i23 i F;. Thus the angle sum is
o4 F;180°(i —2) = 180° o3 iF; —2F; = 180°(2E — 2F)=360°(V —2). m

Verify Descartes’s formula for the five regular polyhedra shown in Fig. 1.44.

The angle sum around each vertex of a convex polyhedron must be less than 360°.
We call the difference between 360° and the angle sum at a vertex the spherical excess

of that vertex. Descartes’s formula tells us that the total spherical excess of all vertices
is 720°.

1.6.2 Geodesic domes

Buckminster Fuller (1895-1983) related the concept of spherical excess to the strength
of geodesic domes, which he invented. He was a prolific inventor who devoted years to
designing economical, efficient buildings. Traditional buildings, designed as modified
rectangular boxes, require the use of a lot of material to enclose a given volume and
support a roof. In contrast, a sphere, the shape that minimizes the surface area for a
given volume, is expensive to build because of its curved surface. Fuller avoided these
drawbacks of the box and the sphere by starting with an icosahedron. The domed effect
of the icosahedron distributes the weight of the structure evenly, as spherical domes do,
without needing a curved surface. Furthermore, the triangular faces of the icosahedron
are structurally stronger than the rectangular faces of traditional buildings. Fuller was
able to increase building size by dividing each of the icosahedron’s 20 faces into smaller
triangles. To maximize the strength of the building, he found that he needed to arrange
these smaller triangles so that all the vertices were on the surface of a sphere. He coined
the name geodesic dome for a convex polyhedron whose faces are all triangles.

We consider only domes based on an icosahedron. The frequency of a dome is n,
where each of the original triangles is divided into n2 smaller triangles (Fig. 1.48). To
determine a geodesic dome we need to know the measures of all the edges and angles.
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Figure 1.48  The division of one face of an icosahedron to make
a three-frequency dome.

As Example 3 illustrates, such three-dimensional calculations rely extensively on two-
dimensional geometry.

Find the edge lengths and angle measures for the two-frequency dome shown in Fig.
1.49, if the radius O A of the sphere is 1.

Solution.  From Problem 6 of this section we know that the length AB =~ 1.05146.
Because D' and E’ are the midpoints of AB and E AD' = D'E’' ~(0.52573. By the
Pythagorean theorem, O D’ ~ 0.85065. The ray O D’ intersects the sphere at D and,
again by the Pythagorean theorem, AD = 0.54653. By Theorem 1.5.4 the triangles
AOD'E’ and AODE are similar. Hence DE ~ 0.61803. Next we can use the law
of cosines, ¢* = a” + b — 2ab cos(C), to determine that m/DAE ~ 68.86°. Theo-
rem 1.1.1 gives us 55.57° for m/ADE and m/AED. The angles of the other corner
triangles are the same, and the angles of the center triangle ADEF are all 60° because
itis equilateral. @

The strength of an icosahedron relies on two facts. First, triangular faces are struc-
turally stable on their own, a consequence of the congruence theorem SSS. Second,
these triangular faces distribute forces well because of the angles where they meet. One
good measure of these angles is the spherical excess at each vertex. For an icosahedron,
the spherical excess at each vertex is 60°. As the number of vertices increases with the
frequency of the dome, Descartes’s formula necessitates a decrease in the spherical ex-
cesses at the vertices. However, the proper design of the dome maximizes the smallest
of these spherical excesses and so maximizes strength. Such a design will also make the
triangles roughly equilateral, distributing the weight of the dome better and so strength-
ening the dome. High-precision technology and modern materials enable domes to be
structurally stable with spherical excesses as small as %o.

For the two-frequency icosahedron of Example 3, show that the spherical excesses of
the two kinds of vertices are 15.7° and 17.72°.
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Figure 1.49  Each face (A A BC) of the icosahedron becomes four

faces on the two-frequency dome. Points D, E, and F are on OD’, OF,
and OF’ and the same distance from O as A, B, and C are.

The strength of geodesic domes is extraordinary. The U.S. Air Force tested the
strength of a 55-foot diameter fiber glass geodesic dome in 1955 before choosing domes
to house the radar antenna of the Distant Early Warning system. They linked the vertices
of the dome to a winch connected to a 17-ton concrete slab buried under the dome.
They had intended to tighten the winch until the dome collapsed under the strain and
then measure the breaking point. However, instead of collapsing, the dome withstood
the stress and actually lifted the concrete slab. The great strength of geodesic domes
enables them to enclose large spaces without interior supports. The largest geodesic
dome, over 400 feet in diameter, far surpasses the largest space without interior support
of any conventional building. (See Edmondson [8] and Kenner [17] for more on Fuller
and geodesic domes.)

1.6.3 The geometry of the sphere

The needs of astronomy and global navigation have prompted the study of the geometry
of the sphere for centuries. Astronomers use the inside surface of a sphere to describe the
positions of the stars, planets, and other objects. For navigational purposes, the earth is
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essentially a sphere. A ship’s captain (or an airplane pilot) seeks the most direct route,
following the curving surface of the earth rather than an Euclidean straight line. The
shortest trip from Tokyo to San Francisco goes considerably north of either city (Fig.
1.50). The shortest path on the surface of a sphere connecting two points is a great
circle—a circle with the same radius as the sphere. A great circle is the intersection of
the sphere and a plane that passes through the center of the sphere (Fig. 1.51). Circles of
longitude and the equator are great circles. The circles of latitude, except for the equator,
are not great circles.

Great circles play much the same role on the sphere that straight lines do on the
plane. In fact, a sphere satisfies the first four of Euclid’s postilates in Appendix A.
However, the geometric properties of lines and great circles differ in important ways.
There are no parallel great circles because two distinct great circles always intersect
in two diametrically opposed points. We use the same letter to denote them, placing a
prime on one of them to distinguish one from the other. Two great circles divide the
sphere into four regions called lunes (Fig. 1.52). The angle that these two great circles
make is the angle at which the two planes meet (Fig. 1.53). Three great circles with no
common point of intersection form eight spherical triangles (Fig. 1.54).

Use Fig. 1.53 to explain why the area of a lune with an angle of a° is (a/90)m r2. Recall
that the surface area of a sphere of radius r is 47 r2.

Suppose that a spherical triangle A A BC has angles measuring 70°, 80°, and 90°. Verify
that the angle sums for the seven related spherical triangles, such as AABC’, also are
more than 180°.

In Theorem 1.6.3, we show not only that the angle sum of a spherical triangle is
more than 180°, but also that this angle sum is related to the triangle’s area. The spher-
ical triangle AABC shown in Fig. 1.54 determines three overlapping lunes BACA’,
ABCB', and ACBC'. The opposite spherical triangle AA’B’C’ determines three other
lunes that do not intersect these three lunes for AABC. Together the six lunes cover the
entire sphere.

Theorem 1.6.3
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Figure 1.53

Figure 1.52

The area of a spherical triangle is proportional to the excess of its angle sum over 180°.
More precisely, on a sphere with radius r, the area of a spherical triangle with angle
measures of «°, B°, and y°is [(¢ + B8+ y — ]80)/180]7”2.

Proof. The area covered by the lunes BACA’, ABCB’, and ACBC' is 2rr?, or half
the sphere because the opposite lunes cover a symmetric region. Note that these three
lunes each cover AABC. Then

i,

Figure 1.54
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2nrt = Area(BACA') + Area(ABCB') + Area(ACBC') — 2 - Area(AABC)

B

[04
=22y Loy lomz — 2. Area(AABC).

90 90

Solving for Area(AABC) gives [(@ + B + y — 180)/180]7r2. =

Exercise 9  Explain why, in spherical geometry, if two triangles on the same sphere are similar, they

are congruent.

(For more information on spherical geometry, see McCleary [21, 3ff].)

PROBLEMS FOR SECTION 1.6

Physical models greatly aid in visualizing and solving
these problems.

1. a) Construct models of the five regular polyhedra.

(See Fig. 1.44 or Wenninger [28].)

b) Prove that there are only five regular polyhedra,
using spherical excess. [Hint: Why do regular
polygons with more than five sides not need to be
considered? Find the largest number of regular
pentagons that can fit around a vertex. Repeat for
squares and equilateral triangles.]

For a rectangular box with sides a, b, and c, explain
why the diagonal d satisfies the “three-dimensional
Pythagorean theorem” a? 4 b? + ¢? = d2.

Suppose that the edge of a cube is 1 unit long.

a) Find the distances from the center of the cube to
the center of a face, to the midpoint of an edge,
and to a vertex (Fig. 1.55).

b) What percentage of a circumscribed sphere’s
volume does the cube occupy?

¢) Describe the polyhedron obtained by connecting
four vertices of the cube, no two of which are
adjacent. What is the volume of this polyhedron?
[Hint: Find the volumes of the four pyramids cut
away.]

. Repeat Problem 3(a) and (b) for a regular octahedron

and tetrahedron with edges [ unit long (Figs. 1.56
and 1.57).

. a) Construct the shape shown in Fig. 1.58 with three

3x5-in. note cards. Two of the cards need 3-in.
slits in their centers. The third card needs this

slit extended to one of the 3-in. sides. The 12

corners of these cards approximate the vertices
of a regular icosahedron.

b) Modify part (a) to find the exact coordinates of
the vertices of a regular icosahedron as follows.

Figure 1.55

Let the slits be on the x-, y-, and z-axes and let the
dimensions of the modified cards be 2 x 2b. Why
are the 12 vertices at (%1, &b, 0), (0, 1, &b),
and (=%b, 0, +=1)? Find b.

. Suppose that the edge AB of a regular icosahedron

is 1 unit long (Fig. 1.59).

a) Find the lengths of the “short diagonal” AC and
the “long diagonal” BC. (See Problem 5.)

b) Find the length of the edge of a regular icosahe-
dron inscribed in a sphere of radius 1.

¢) Repeat Problem 3(a) and (b) for the icosahedron.

7. Find eight vertices of a regular dodecahedron that

are the vertices of a cube. (See Fig. 1.44.)

8. The excess of a spherical triangle is the difference

between its angle sum and 180°. Without using

(3

Figure 1.56

Theorem 1.6.3, show that excesses are additive: If D
is on the short arc of the great circle through B and
C, the excess of AABC is the sum of the excesses

of AABD and AADC. Illustrate this situation.

. On a sphere let N be the “north pole” and A and B

be two points on the “equator” with mZAN B = 90°.
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Figure 1.57

[:;ciC, D, and E be the midpoints of XE, XI\V, and
BN, respectively.

a) Explain and illustrate why CN, DB, and AE
intersect in a common point, F.

b) Find the angle sum of the spherical triangle
AACF.

(0,~-1,b) 0,1,b)

Slit

Figure 1.58
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Figure 1.59

¢) Verify that the area of AACF agrees with
Theorem 1.6.3.

10. Cavalieri’s principle is often an a;(iom in high school
texts because it provides an elementary way to prove
results about volumes of curved shapes. Bonaventura
Cavalieri (1598-1647), a pupil of Galileo, used his
principle to find volumes (and areas) before the
advent of calculus.

Cavalieri’s Principle: Let A and B be two solids included

P ".'."'.'Q‘.'s -
005G
20202220 %% 0
RIARHLHARRI
| IRE0050606050 558K

between two parallel planes. If every plane P parallel to
the given planes intersects A and B in sections with the
same area, then A and B have the same volume.

a) Use Cavalieri’s principle and Fig. 1.60 to show
the following result of Archimedes. The volume
of a cylinder whose height is twice its radius
equals the volume of a sphere of the same radius
plus twice the volume of a cone with the same
radius and a height equal to the radius.

11.

12.
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The family of planes must together completely cover both solids.

b) Find two solids A and B with different volumes

and a family of nonparallel planes so that A and
B intersect each plane in sections of equal area. A

(Calculus) Note that the derivative d A/dr of mr?,
the area of a circle of radius r, is the circumference
of the circle. Explain geometrically why the area
and circumference are related in this way. Explain
why the same relationship holds for the volume and
surface area of a sphere. [Hint: Consider adding a
thin strip around a circle of radius r. Approximately
how much area is in the thin strip?]

Figure 1.61 shows a design for a three-frequency
dome. The nine triangles of the dome are “lifted”
from the nine equilateral triangles dividing AABC
so that the vertices are all on a sphere of radius
1. Find the lengths and angle measures as follows,
assuming that DE = DI.

a) Explain why there are just three different lengths,
AD, DE, and DJ. Explain how to find all the

N/

N
AW

BN

13.

angle measures fromm /DAl and m/DJE.

b) From Example 3, AB ~ 1.05146. Find D'E/,
D'M',OM’,and OD'.

¢) Use the law of cosines to find m/D'OE’,
m/AOD', AD, DE, OJ', D'J', DJ,m/DAI,
andm/DJE. -

d) Find the spherical excess at A, D, and J.

a) Find the number of vertices on a two-frequency
geodesic dome. (See Fig. 1.49.)

b) Find the number of vertices on a three-frequency
dome (Fig. 1.61).

¢) Show that the number of vertices on an n-
frequency dome based on an icosahedron is
10n? + 2. [Hint: Find formulas for the number
of new vertices on one edge of the icosahedron
and the number of new vertices on one face of
the icosahedron. Then use the numbers of V, E,
and F of an icosahedron.|

Figure 1.60  Compare the areas of the cross sections of a cylinder, a

sphere, and a double cone at the same height. Figure 1.61

A three-frequency dome.
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d) Use part (c) to find the average spherical excess
at each vertex of an n-frequency dome. Compare
your value when n =3 with your answer in
Problem 12(d). What is the largest practical value
of n if the average spherical excess must be %u
for a dome?

Give an example on a sphere to show that Euclid
1-16 is independent of Euclid’s first four postulates.

A spherical cap is the set of all points on a sphere of
radius R whose distance (measured along the sphere)
is at most r from a point A on the sphere.

a) Find the circumference of the spherical cap in
terms of  and R.

b) (Calculus) Verify that the area of the spherical
cap is 2w R? — 27 R? cos(r/R). [Hint: Use
radians. Let x be as shown in Fig. 1.62. Recall
that the area of the surface obtained by revolving

Figure 1.62

PROJECTS FOR CHAPTER 1

L

Archimedes and others estimated the ratio of the
circumference of a circle to its diameter () by using
regular polygons—the greater the number of sides,
the more accurate the estimate of .

a) Consider polygons inscribed in a circle of radius
1 (Fig. 1.64). Find a formula for the length y of
the side of a regular 2n-gon in terms of the length
x of the side of a regular n-gon.

b) For a regular hexagon inscribed in a circle of

16.

y = f(x) between x = a and x = b about the x-
axis is fab 2w f(x)\/1 + (f'(x))2dx. Calculate

the integral for a spherical cap for general a and
b. Then determine a and b in terms of r and R.]

¢) Archimedes found the surface area of the
spherical cap to equal the area of a circle whose
radius equals the (straight-line) distance from A
to a point on the circumference of the cap. Verify
Archimedes’ theorem.

Curiously, the Euclidean plane is “triangle complete”
but Euclidean space is not “tetrahedron complete.”
Triangle complete means that any three lengths that
satisfy the triangle inequality (a + b > ¢) in any
order can actually appear as the sides of a Euclidean
triangle. However, there are sets of six lengths
that satisfy the triangle inequality appropriately,
but no tetrahedron in Euclidean space has its six
edges with those lengths. More easily, there are four
triangles whose corresponding sides are congruent
that cannot be folded to make a tetrahedron. Find
such an example. (Figure 1.63 shows four triangles
that can be folded to make a tetrahedron.)

Figure 1.63

radius 1, the side has a length of 1 and a perimeter
of 6, an approximation of 2x. Use the formula
from part (a) to find the perimeters of regular 12-
gons, 24-gons, etc., to give better lower estimates
of 2m.

¢) Write a computer program that will print out the
approximations of 7 found by the formula in
part (a) for polygons with 3 x 2 sides, where
1<i<30.
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Figure 1.64 Find y in terms of x.

d) Find upper estimates for 7 by using circum-

scribed regular polygons in parts (a), (b), and (c).

[Hint: The formula for tan(26) will help.]

Remark The Arab mathematician Nasir-Eddin (1201-

1274) used essentially this method (without modern

notation or computers!) with a regular polygon of 3 x 228

sides. He wanted to ensure that the error in his estimate of
the circumference of the universe, based on Islamic ideas
of its radius, was no more than the width of a horse’s hair.

2. Tangram is a Chinese puzzle made with the seven
shapes shown in Fig. 1.65. They can form a square,
if properly arranged, and various interesting shapes.

Figure 1.65 The seven pieces of a tangram can be arranged to form a square.
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Any figure that can be made with these seven shapes
is called a tangram. In this project, you are to
construct all convex tangrams. Let the short sides
of the smallest triangle have a length of 1. Find the
lengths of the sides, the angles, and the area for each
of the seven shapes. What angles can appear at the
corners of a convex tangram? Why is there only
one triangular tangram? Why can a convex tangram
not have more than eight sides? After you have
found the candidates for convex tangrams, construct
them. (Read [24] gives all convex tangrams, some
background, and an open mathematical question on
tangrams.)

Figure 1.66 shows a pantograph, a device for

enlarging a design.

a) Explain why the design traced by the pencil must
always be similar to the original design. [Hin::
Why do the bars need to form a parallelogram?]

b) Determine where the holes should be drilled
so that the pencil will trace a figure whose
dimensions are twice the original design and
k times the original design.

¢) Make a pantograph and use it to enlarge several
designs.

d) How could you alter a pantograph to reduce a
design?

. Let’s try to measure how close a nonconvex set is to

being convex. Call a point P in a set a guard point
provided that for every other point Q in the set,

P is also in the set. (A guard at a guard point can
see every spot in the set.) The ratio (area of guard

points/area of set) is called the inside convexity of a
set.

a) Find the inside convexity for each shape depicted
in Fig. 1.67. For each shape, find the “worst”
place to put a guard, that is, the point from which
the guard would see the smallest percentage
of the total area. From that worst place, what
percentage of the entire area does a guard see?
Explain your answers.

Another way to measure the convexity of a set is to
measure how much must be added to the set to obtain
a convex set. Define the outside convexity of a set S

to be the ratio (area of S/area of the smallest convex
set containing §).

b) Find the outside convexity of the shapes shown
in Fig. 1.67.

Figure 1.66  Fix the lower left base of the pantograph. As the stylus in
the middle of the bottom traces a design, the pencil in the lower right
draws an enlargement. Moving the connectors at A and B change the

scale of the enlargement.

fe-a |
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Figure 1.67

¢) Explain why the inside (or outside) convexity of
any convex set is 1.

d) Find a set with positive area whose inside
(outside) convexity is 0.

¢) Find a nonconvex set whose inside and outside
convexity is 1. Explain.

f) Compare the definitions of inside and outside
convexity with your intuition of how close a set
is to convex. Look for a better definition.

. Use Fig. 1.68 to give a plausible explanation of why

the volume of a square pyramid is one-third the
height times the base. Build a model of Fig. 1.68.
Will this decomposition work if the cube is replaced

with a rectangular box? Will this decomposition
work if the cube is replaced with a triangular prism?

. A ribbon wrapped around a box can be removed

without cutting, stretching, or untying it (Fig. 1.69).
Try to do so with an actual ribbon on a box. Then
model this situation geometrically and explain why
it works. It may be easier to explain first with a
rectangle.

7. a) Construct the 13 Archimedean solids (Wenninger

[28]). The Archimedean solids, together with an
infinite family of prisms and another infinite

family of antiprisms, are semiregular polyhedra.
Semiregular polyhedra have two or more kinds of
regular polygons for faces and the same number,

Figure 1.68



Chapter 1 Euclidean Geometry Suggested Readings 57
~ \: \\ - /
Figure 1.69

types, and arrangement of faces around each make the definition of a polyhedron explicit. Beck et \ / =] =

vertex. al. [2] gives applications of this generalized formula.
b) Find the spherical excess at a vertex for each of Generalize Descartes’s formula to polyhedra with

these Archimedean solids. holes.
¢) Find the spherical excess at a vertex for semireg- 10. For a convex polyhedron, form its dual polyhedron

ular prisms and antiprisms. as follows. The vertices of the dual are at the
d) Explain why there can be no other Archimedean centers of the original polyhedron’s faces. Two new Figure 1.70

solids.

. Define a deltahedron to be a strictly convex polyhe-
dron all of whose faces are equilateral triangles. (A

vertices are connected with an edge provided that the
corresponding original faces were joined at an edge.

a) Describe the faces of the dual.

20.

Investigate the geometry of the sphere. (See Hender-
son [14] and McCleary [21].)

case (“beyond a reasonable doubt”). What phrase
would you offer to describe mathematical proofs?

convex polyhedron is strictly convex if no two faces b) Veréfy that the duals of regular polyhedra are 21. Write an essay giving your understanding of why Compare the advantages and disadvantages of these
lie in the same plane. We use the name deltahedron again regular polyhedra. mathematics is certain and why it is applicable. differing levels of proof.
because the capital Greek letter delta A looks like a ¢) How are V, E, and F for a polyhedron and its Compare your ideas with those of Plato and Aristo- ~ 24. Write an essay explaining axiomatic systems and
triangle.) dual related? tle. (See also Grabiner [12].) models to a high school geometry student. Use
a) Find an equation relating E and F in deltahedra. d) Build duals of some of the Archimedean solids. 22. Write an essay on the roles of intuition and proofs in examples, preferably everyday ones.

Justify your equation. 11. Build a geodesic dome. (See Kenner [17].) geometric understanding. 25. Write an essay on the understanding of definition in
b) Explain why there are at most five triangles at 32 Byijld some tensegrity figures, invented by Buck- 23. Write an essay on the different levels of proof mathematics, in other disciplines and in every day

any vertex of a deltahedron. Use this to find an
inequality relating V and E in a deltahedron.

¢) Use parts (a) and (b) to show that in a deltahedron
E <30 and E must be a multiple of 3. List all
the possible candidates for values of V, E, and F
of deltahedra.

13.

minster Fuller, such as that shown in Fig. 1.70. (See
Kenner [17] and Pugh [23].)

Investigate the Geometer’s Sketchpad, CABRI, or
other computer programs designed to aid geometric
exploration.

demanded in mathematics, in a civil court case (“the
preponderance of the evidence”) and a criminal court
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