1.4 AXx10MATIC SYSTEMS, MODELS, AND METAMATHEMATICS

Definition 1.4.1

In Section 1.3 we showed the logical need for undefined terms in an axiomatic system,
which ignores what those terms mean. However, people depend on meaning and in-
tuition to create and understand mathematics. A string stretched taut between its ends
provides a strong intuition of a line, but such an image is too imprecise for mathematics.
Mathematical models provide an explicit link between intuitions and undefined terms.
The usual analytic model of Euclidean plane geometry is the set RZ={(x,y):x,y €R},
where a point is interpreted as an ordered pair of numbers (x, y) and a line is interpreted
as the points that satisfy an appropriate first degree equation ax + by + ¢ = 0. High
school students spend considerable time learning how this algebraic model matches ge-
ometric intuition and axioms. In making a model, we are free to interpret the undefined
terms in any way we want, provided that all the axioms hold under our interpretation.
Note that the axioms are not by themselves true; a context is needed to give meaning to
the axioms in order for them to be true or false.

A model of an axiomatic system is a set of objects together with interpretations of all
the undefined terms of the axiomatic system such that all the axioms are true in the set
using the interpretations.
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Figure 1.29  Interpret point by a dot and

Example 1

Exercise 1

Metatheorem 1.4.1

Figure 1.30  Interpret point by a line segment and

line by a line segment. line by a face of the pyramid.

Figures 1.29 and 1.30 give different models of the axiomatic system with the undefined
terms point, line, and on and the axioms:

i) Every point is on exactly two lines.
il) Every line is on exactly three points.

In these and later models on has the obvious interpretation. @

In the model given by Fig. 1.30 reinterpret lines as the vertices (corners) of the pyramid
(and points as line segments.) Is the result still a model of the axioms in Example 1.4.17

Models do much more than provide concrete examples of axiomatic systems; they
lead to important understandings about axiomatic systems. Metamathematics considers
axiomatic systems and their models as a whole. The prefix meta, Greek for “beyond,”
distinguishes metamathematics from the mathematical properties proved within a sys-
tem. For example, Metatheorem 1 implies that the axioms of a system are all that are
needed to determine the models of the system. The proofs of metatheorems are beyond

the level of this book. (See DeLong [6, Chapter 4] and Wilder [29, Chapter 2] for more
on metamathematics.)

If all the axioms of an axiomatic system are true in a model, then all the theorems of
that system are also true in that model.

The most important property of an axiomatic system is consistency, which says that
we cannot prove two statements that contradict each other. For example, a proof of both
1 =2 and 1 5 2 would render proofs useless. However, consistency is difficult and often
impossible to show directly. Fortunately Metatheorem 1.4.2 provides an easier method

with models. In particular, the models for Example 1 show that the axiomatic system is
consistent.

Definition 1.4.2

Metatheorem 1.4.2

Definition 1.4.3

Example 2

Example 3
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An axiomatic system is consistent iff no contradictions can be proven from the axioms.
An axiomatic system is relatively consistent iff its consistency can be proven assuming
the consistency of another axiomatic system.

(Godel, 1930) An axiomatic system is consistent iff it has a model.

The analytic model of geometry shows the relative consistency of Euclidean geom-
etry because analytic geometry depends on the real number system. Are the axioms for
the real numbers consistent? The model of the real numbers we are likely to choose isa
geometric one: a line in Euclidean geometry. We risk entering a vicious circle: The cru-
cial property of a mathematical system, consistency, is beyond our reach for two central
mathematical systems. Indeed, this problem and others like it inspired David Hilbert and
others to investigate mathematical logic. Mathematical logic has given us profound in-
sights into the nature of mathematics and proof, including their limitations. In particular,
one of Godel’s incompleteness theorems, proven in 1930, shows that we cannot prove
the absolute consistency of elementary arithmetic, and by extension, Euclidean geome-
try and the real number system. Thus relative consistency is the best we can do for such
sophisticated systems. No one seriously doubts the consistency of these systems.

Other metamathematical properties, though not essential, give important insight
into axiomatic systems and models.

A statement is independent of a set of axioms iff neither the statement nor its negation
can be proved from the axioms. If, in an axiomatic system, each axiom is independent
of the other axioms, the set of axioms is said to be independent. An axiomatic system
is complete iff every statement based on the undefined terms can either be proved or
disproved from the axioms.

We can use Metatheorem 1.4.1 to prove independence with models. Suppose that
we have two models for a set of axioms and that a statement is true in the first model but
not in the second model. Then Metatheorem 1.4.1 applied to the second model shows
that the statement cannot be a theorem of these axioms. Similarly, the first model shows
the negation of that statement cannot be a theorem.

The models in Figs. 1.29 and 1.30 show the statement “there are exactly six points” to

be independent of the axioms of Example 1. Because this statement is independent of
the axioms, these axioms are not complete. @

Taxicab geometry alters the usual analytic model of Euclidean geometry by giving a
different interpretation to distance. Rather than use the Pythagorean theorem to measure
distance, we use the formula dr ((x1, y1), (x2, ¥2)) = |x2 — x1| + [y2 — y1l. This formula
gives the distance a taxi goes if it travels only along north-south and east—west streets
(Fig. 1.31). This model still satisfies Euclid’s postulates, although circles look odd.
However, Euclid I-4 (SAS) is no longer valid in this geometry (Fig. 1.32). This theorem
holds in the usual analytic model, so it is independent of Euclid’s postulates. That is,
not only did Euclid’s proof of 1-4 have a flaw, but he could never actually prove that
proposition from his axioms. (In fairness, Euclid’s work shouldn’t be faulted because of
insights occurring 2000 years after his work.) @
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Figure 1.31 The taxicab distance between (2, 5) and
@4, 1)is|2—4|+1|5—1|=2+4=6.

Example 4

all five of Euclid's
postulates and
Playfair's Axiom

Figure 1.32 _In taxicab geometry AC is longer than A’C’,
even though AB= A’B’, BC = B'C’,and /ABC = /A'B'C'.

We can stretch a string taut on the surface of a sphere to construct a spherical line
segment. Similarly, we can construct a spherical circle by fixing one end of a taut
string and swinging the other end around it. Experiment informally on a ball or sphere.
Confirm that, within reason, hold in this model. Now
draw a spherical line segment wiii a iengui of between one-third and one-half the
circumference of the sphere (A B in Fig. 1.33). Use this line segment to imitate Euclid’s
construction in Proposition I-1. (See Section 1.3.) Note that the two spherical circles
with centers at A and B and radii of length AB do not intersect. This construction

does not hold in this model but does in the usual model. Therefore it is independent
of Euclid’s first four postulates. @

For more on taxicab geometry and spherical geometry, see Henderson [14] and
Krause [19].
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Figure 1.34  Interpret point by a dot and

Example 5

Definition 1.4.4
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Figure 1.35  Interpret point by a dot and

line by a line segment. line by an arc.

Hilbert’s axiom system is both independent and complete, assuming that it is consistent.
(The proof is beyond the level of this text. See the footnote in Section 1.3) @

Hilbert’s axioms are even stronger than being complete: All models of these axioms
look exactly alike. In mathematical terminology, all are isomorphic. Two more models
of the axiomatic system from Example 1 support this idea. The models in Figs. 1.34
and 1.35 both have six points and four lines, as the model in Fig. 1.30 did. They all look
different on the surface, but the models in Figs. 1.30 and 1.34 are structurally the same
(isomorphic), whereas the one in Fig. 1.35 is different. We can match the points and lines
from Fig. 1.30 with those from Fig. 1.34 and have corresponding points on correspond-
ing lines. Indeed, the labeling of these figures provides such a matching. However, no
matter how we match the points in Fig. 1.35 with those of these two models, the relation
on will never be the same. In particular, P and Q share two lines in common, something
that never happens in the other models. The model shown in Fig. 1.29 has no chance of
being isomorphic with any of these models because it has more points and lines.

Two models are isomorphic iff there is a one-to-one onto function that matches all the
elements of one model with those of the other model and that transfers all the relations
based on the undefined terms that hold in one model to relations that hold in the other
model.

PROBLEMS FOR SECTION 1.4

1. Use graph paper to help you with this problem. (See
Example 3.)

¢) Determine whether SSS, ASA, and AAS hold in
taxicab geometry.

a) Interpret AB = CD in taxicab geometry to
mean dr (A, B) = dy(C, D). Which of Hilbert’s
congruence axioms hold in taxicab geometry?

2. Use a sphere or ball that you can draw on for this
problem. (See Example 4.)

a) Construct triangles of different sizes on a sphere
and approximate their angle sum by using a copy
of the circle in Fig. 1.36. (Place the center of the
circle approximately over the vertex of an angle

b) Define and describe “taxicab circles,” using the
distance dr. What are the different types of
intersection of two different taxicab circles?

Figure 1.33
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. Use the axiomatic system of Example 1.

. Use the axiomatic system of Problem 6 of Sec-
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Figure 1.36 A protractor.

and the mark for 0° on one of the sides of the
angle.) Does Theorem 1.1.1 hold in this model?

¢) Repeat part (b) for axiom (iv).
d) Find two nonisomorphic models of this system,
b) Which of Hilbert’s congruence axioms hold for each with eight points.

the sphere? ¢) Find two nonisomorphic models of the system in

¢) Determine whether SAS, SSS, ASA, and AAS Problem 6(c).
hold for a sphere. 5. Use the axiomatic system of Problem 7 of Sec-
d) Determine whether the Pythagorean theorem tion 1.3.

holds for a sphere. a) Find a model with seven points.

b) Find models to show that all the axioms are
a) What is the smallest positive number of points of independent.

a model of this system? 6. Consider the axiomatic system with the undefined
terms corner, square, and on and the following

axioms.

Repeat for lines and explain your answers.

b) Find a model with six points not isomorphic to
any of the other models. i) There is a square.

¢) Find two nonisomorphic models with nine points. ii) Each square is on four distinct corners.

iii) For each square there are four distinct squares
with exactly two corners on the given square.

d) Find and prove a theorem of this system.

tion 1.3. iv) Each corner is on four distinct squares.

a) Show that these axioms are relatively consistent
by finding an infinite model in the Euclidean
plane.

a) Find several models of this system.

b) Show that axiom (iii) is independent of the other
axioms.

b) Find a finite model for the first three axioms.

¢) Find a finite model for all four axioms.

. Interpret “Q is between P and R” by d(P, Q)+

d(Q, R) =d(P, R), where P, Q, and R are distinct

and d(X, Y) is the distance between X and Y.

a) Are all of Hilbert’s axioms satisfied in the
analytic model of Euclidean geometry with this
interpretation?

b) On a graph, color the set of points in taxicab
geometry between (0, 0) and (1, 2) using the
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given interpretation. Which of Hilbert’s axioms
of order are satisfied in taxicab geometry with
this interpretation?

¢) In Euclidean geometry, if Q is between P and R
and R is between Q and S, then Q is between
P and S. Does this property still hold in taxicab
geometry with this interpretation of berween?
Explain.

d) If P and R are opposite points on a sphere, which
points Q on the sphere would be between P and
R under this interpretation?



