Chapter 1 Euclidean Geometry

1.3 A CRrITIQUE OF EUCLID-MODERN AXIOMATICS

At the end of the nineteenth century, Euclid’s work received scrutiny far surpassing the
preceding 2000 years’ efforts. This examination revealed how much more precise and
explicit mathematics has become, without calling into question any of Euclid’s results.
For example, consider Euclid’s proof of his first proposition, given in shortened form
(from Heath [13, volume I, 241]. Can you find the logical gap in his proof, given his
postulates and common notions? (Figure 1.26.)

Proposition I-1  On a given finite straight line to construct an equilateral triangle.

Proof. Let AB be the given finite straight line. . . . With center A and radius AB let
the circle BC D be described; again, with center B and radius BA let the circle ACE
be described (postulate 3, in Appendix A). From point C, in which the circles cut each
other, to points A and B, join the straight lines CA and CB (postulate 1, in Appendix
A). Now, point A is the center of the circle C DB, so AC is equal to A B (definition 15, in
Appendix A). Again, . . . BA is equal to BC. . . . And things equal to the same thing
are also equal to one another . . . (common notion 1, in Appendix A). Therefore . . .
AC, AB, BC are equal to one another. Therefore AABC is equilateral. =

Euclid’s construction is straightforward, and he followed it with a proof that the
three sides are congruent. However, Euclid never showed, nor could he show from
his assumptions, that the circles must intersect. This logical gap indicates one of the
many implicit assumptions Euclid made that were very hard to detect because they were
“obvious.” (We made the same assumption in Example 3 of Section 1.2.) In modern
terms Euclid assumed that lines, circles, and other figures are continuous. In the fifth
postulate and numerous other places Euclid assumes an order to points on lines with no
justification or discussion. (In Example 3 of Section 1.2 we assumed such ordering to

Figure 1.26
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talk about a point “outside” a circle.) David Hilbert and others recognized that rigorous
proofs require explicit axioms about continuity, order, and other assumptions.

1.3.1 Hilbert’s axioms

Theorem 1.3.1

Exercise 1

Hilbert’s axiomatic system, first presented in 1898 [15], corrects the logical deficien-
cies found in Euclid’s work. A careful comparison of Euclid’s definitions and assump-
tions (Appendix A) with Hilbert’s system (Appendix B) shows some of the differences
between a modern axiomatic system and the system Euclid developed. In particular,
Hilbert’s axioms provide enough explicit properties to prove all the theorems of Eu-
clidean geometry without any logical gaps. Also, Hilbert uses undefined terms, whereas
Euclid starts his text with a list of definitions, some having little mathematical value.

The first three groups of Hilbert’s axioms codify elementary properties, many
previously overlooked. Axioms I-1 and I-2 modernize Euclid’s first two postulates.
Axiom I-3 guarantees that there are some points in the geometry. The first three axioms
of order give the most elementary properties of betweenness on a line. Pasch’s axiom
(1I-4), which says that a line that enters a triangle must exit as well, deserves more
explanation. To help explain Pasch’s axiom we derive it from the separation axiom, an
alternative (I1-4’) that Hilbert gives.

The separation axiom (II-4) implies Pasch’s axiom (II-4).

Illustrate the proof of Theorem 1.3.1.

Proof.  Suppose that the separation axiom holds: A line m separates the points that are
not on m into two sets such that if X and Y are in the same set, XY does not intersect
m, and if X and Y are in different sets, XY does intersect m. To show Pasch’s axiom,
suppose that a line / enters AABC at D on side AB but that A, B, and C are not on /.
By the separation axiom, A and B are on opposite sides of /; that is, they are in different
sets of points. Now C is in just one of those two sets, which means only one of AC and
BC have a point on /, where [ exits from AABC, showing Pasch’s axiom. m

The congruence axioms III-2 and III-3 make precise Euclid’s first two common
notions. Axioms III-1 and ITI-4 guarantee the existence and uniqueness of congruent
segments and angles. These axioms replaced Euclid’s use of circles and constructions.
Axiom III-5 is Euclid’s Proposition I-4, the familiar SAS property of high school
geometry. Euclid’s proof has a logical gap because he used motion without providing
any axioms about movement.

Hilbert’s fourth group contains only Playfair’s axiom, which by Theorem 1.2.1
is logically equivalent to Euclid’s fifth postulate. This axiom distinguishes Euclidean
geometry from hyperbolic geometry, which we introduce in Chapter 3.

Although the earlier axioms ensure lines have infinitely many points, group V
implies that the points on a line correspond to the real numbers. Axiom V-1, the
Archimedean axiom, eliminates infinitely large and infinitely small line segments.
[Archimedes (circa 287-212 B.c.) used this idea in some of his proofs.] Hilbert’s compli-
cated axiom of linear completeness, V-2, ensures that lines have no gaps while avoiding
concepts from analysis.
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DAVID HILBERT

But in the present century, thanks in good part to the influence of Hilbert, we have
come to see that the unproved postulates with which we start are purely arbitrary.
They MUST be consistent; they HAD BETTER lead to something interesting.
—Coolidge

The work of David Hilbert (1862-1943) symbolizes the modern abstract, axiomatic
approa§h to mathematics. He contributed significant results in many ﬁellds including
algebr‘alc invariants, number theory, partial and ordinary differential equati;ms integral
equations, geometry, and the foundations of mathematics. He won internationz;l renown
at age 26 when he published a result in algebraic invariants, a precursor of modern abstract
a.lggbra, that had seemed beyond possibility. His proof neatly avoided the laborious and
limited constructive methods of previous mathematicians. One of these mathematicians
Paul Gordan, at first disdained Hilbert’s radical nonconstructive proof saying, “This is not
mathematics; it is theology.” He later added, “I have convinced myself that theology also
has its advantages.” Hilbert's work in integral equations led to Hilbert space, an infinite
dgne_nsional analog to Euclidean space important in the study of quantum mechanics in
physics.

Hilbert was very influential in the foundations of mathematics. Developments in
nineteenth century analysis and geometry made clear the need for a careful scrutiny of
axiomatics. To make hidden assumptions explicit, Hilbert realized that mathematicians
must isolate formal axioms from their meaning. He devised ground-breaking axiom
systems for both the real numbers and Euclidean geometry. He proved the relative
consistency of geometry, assuming the consistency of the real numbers. Hilbert's program,
which he hoped would prove the absolute consistency of all of mathematics, led others
to a penetrating analysis of logic and the foundations of mathematics. Godel’s famous
incompleteness theorems came out of that program and proved, among other things, the
impossibility of Hilbert’s goal. However, Godel’s theorems did show how deeply Hilbert’s
axiomatic approach enabled mathematicians to probe the foundations of mathematics.

Hilbert’s formal axiomatics devoid of meaning was never intended to replace
mathematics. Throughout his career, Hilbert stressed the dynamic interplay of concrete
problems and general, abstract theories. His famous list of 23 problems in 1900 illustrates
well this link. Each problem has led mathematicians to a more profound understanding
of an area of mathematics. His own research revealed the power of particular problems to
inspire deep mathematics and of abstract mathematics to elucidate particular problems.

1.3.2 Axiomatic systems

An axiomatic system provides an explicit foundation for a mathematical subject. Ax-
iomatic systems include seven parts: the logical language, rules of proof, undefined
terms, axioms, definitions, theorems, and proofs of theorems. We discuiss the last five
parts—the ones with geometric content.

Consider Euclid’s definition of a point as “that which has no part.” This definition
is more a philosophical statement about the nature of a point than a way to prove state-
ments. Buclid’s definition of a straight line, “a line which lies evenly with the points on
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itself,” is unclear as well as not useful. In essence, points and lines were so basic to Eu-
clid’s work that there is no good way to define them. Mathematicians realized centuries
ago the need for undefined terms in order to establish an unambiguous beginning. Oth-
erwise, each term would have to be defined with other terms, leading either to a cycle of
terms or an infinite sequence of terms. Neither of these options is acceptable for care-
fully reasoned mathematics. Of course, we then define all other terms from these initial,
undefined terms. However, undefined terms are, by their nature, unrestricted. How can
we be sure that two people mean the same thing when they use undefined terms? In
short, we can’t. The axioms of a mathematical system become the key: They tell us how
the undefined terms behave. Axioms are sometimes called operational definitions be-
cause they describe how to use terms and how they relate to one another, rather than
telling us what terms “really mean.” Indeed, mathematicians permit any interpretation
of undefined terms, as long as all the axioms hold in that interpretation. In Section 1.4
we explore the interplay between axioms and their interpretations in models.

Unlike the Greek understanding of axioms as self-evident truths, we do not claim
the truth of axioms. However, this does not mean that we consider axioms to be false.
Rather, we are free to choose axioms to formulate the fundamental relationships we
want to investigate. From a logical point of view, the choice of axioms is arbitrary; in
actuality, though, mathematicians carefully pick axioms to focus on particular features.
For example, in perspective drawing parallel lines intersect at a point on the horizon.
Projective geometry is an axiomatic system in which any two lines intersect in a point.
This system, discussed in Chapter 6, enables us to understand many consequences
stemming from perspective. However, we don’t need to decide whether “in truth” there
are parallel lines or if all lines intersect. Indeed, in the concrete world of atoms and
energy, there are no mathematical lines at all. Nevertheless, these axiomatic systems
and many others have given us a profound understanding of the world. Axiomatic
systems allow us to formulate and logically explore abstract relationships, freed from
the specificity and imprecision of real situations.

Mathematicians build two basic types of axiomatic systems. One completely char-
acterizes a particular mathematical system. For example, Hilbert’s axioms characterize
Euclidean geometry completely.! The second focuses on the common features of a fam-
ily of structures, such as vector spaces. Although infinitely many different vector spaces
exist, all satisfy certain essential properties. The general study of vector spaces greatly
aids the development of theories in economics, physics, mathematics, and other fields.
Such axiomatic systems unite a wide variety of examples within one powerful theoreti-
cal framework.

Mathematical definitions are built from undefined terms and previously defined
terms. For example, Pﬂben defines the angle ZABC as a E)int B and two rays BA and
BC. In turn, the ray BA is the set of points X on the line AB such that X is between A
and B, X is A, or A is between B and X. Thus Hilbert reduces the notion of an angle
to the undefined terms point, line, on, and between. These same undefined terms are
sufficient to define convex, an important concept in modern mathematics. The Greeks

I 'This statement may appear to contradict Godel’s incompleteness theorem. However, axiom V-2 is a “second-
order axiom,” a concept beyond the level of this text. (See Delong [6] for information on second-order logic.)
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Figure 1.27 Nonconvex and convex sets.

never distinguished between nonconvex sets, which “bend,” and convex sets (Fig. 1.27),

perhaps because they never considered betweenness. Intuitively, in a convex set, every
point can “see” every other point.

A set § is convex iff for distinct points P and Q in S, P Q is entirely in S.
Rewrite the definition of convex, using only the undefined terms between and point.

Which of the terms in Euclid’s definitions (Appendix A) do you think should be un-
defined terms? Which of the remaining definitions fit our modern understanding of
definitions?

Theorems and their proofs are the most distinctive parts of mathematics, whether
in an axiomatic or some other system. In an axiomatic system, a theorem is a statement
whose proof depends only on previously proven theorems, the axioms, the definitions,
and the rules of logic. This condition ensures that the entire edifice of theorems rests
securely on the explicit axioms of the system.

Proofs of theorems in an axiomatic system cannot depend on diagrams, even though
diagrams have been part of geometry since the ancient Greeks drew figures in the sand.
We need the powerful insight and understanding that such diagrams provide. However,
a corresponding risk comes with the use of pictures: We are liable to accept as intuitive
a step that does not follow from the given conditions. Euclid’s first proof, discussed
previously, shows how easy it is to include implicit assumptions. Euclid’s minor “sins of
omission” never led him to an erroneous result, but the potential remains for a diagram
to mislead us, as in Example 1, used with permission from Dubnov [7, 15]. Even though
diagrams are not permissible in a proof in an axiomatic system, they certainly can and

Example 1
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should be included to help us understand the ideas. They must be studied critically to
ensure that the illustrated relationships are proved or legitimately assumed.

Claim. A rectangle inscribed in a square is a square.
Verify that the claim is incorrect. Then try to find the error in the “proof.”

Proof.  Letrectangle M N P Q be inscribed in square ABC D (Fig. 1.28). Drop perpen-
diculars from P to AB and from Q to BC at R and S, respectively. Clearly, PR = QS
because these segments match the sides of the square ABC D. Furthermore, the rectan-
gle’s diagonals are congruent: PM = ON.So APMR = AQN S, and hence /PMR =
/QNS. Consider the quadrilateral MBN O, where O is the intersection of QN and
PM. Its exterior angle at vertex N is congruent to the interior angle at vertex M, so
the two interior angles at vertices N and M are supplementary. Thus the interior an-
gles at vertices B and O must be supplementary. But /ABC is a right angle and hence
/N OM must also be a right angle. Therefore the diagonals of rectangle MN P Q are
perpendicular. Hence MN P Q is a square.

The preceding argument is correct up to the conclusion /PMR = /QNS. Then
the diagram shown in Fig. 1.28 misleads us to think that /O N B is supplementary to
/OM R. However, these angles can be congruent if we switch N and S in the diagram
and correspondingly move Q down. Illustrate this second case. @

How can we possibly make all assumptions explicit and eliminate all risk of incor-
rect proofs? Mathematical logic, developed by Hilbert and others, involves the use of a
formal language so austere that a proof can be checked in a purely mechanical manner,
free from human intuition. In principle, a computer could check such a proof to decide
its validity. Consider, for example, the statement, “Two distinct points have a unique

Figure 1.28



1.4 Axiomatic Systems, Models, and Metamathematics 29

28 Chapter 1 Euclidean Geometry
line on them.” We can make the statement more explicit as follows: “For all points A 6. Consider the axiorqatic system with lheAundeﬁned a) Given two dis;inct lir;les prove that they have
and Aj if A} # Ay, then there is a unique line Bj such that A is on B and A; is on B;.” terms point and c{f{jace{zt and thS following axioms. exactly one point on them. .
Finally we could turn this more explicit statement into pure symbols: Use » to denote “is adjacent to. b) Prove that there are at least seven points.
i) There is at least one point. ¢) Given any point prove that it has at least three
VAVA2(=(A1 = 47) = @By : (Ri(Ay, B1) A Ri(Az, B1))). S i) If P< Q,then Q< P and P # Q. lines on it. [Hint: First consider a point not on the

: s : line of axiom (i).]
Clearly, we need to decode these symbols so that people not familiar with them can jii) Every point has exactly three distinct points

read the statement. (We don’t use these logic symbols, but for your information, ¥ — adjacent to 1t d) Prove.that tbcrc are:al h?ast seven lines.
= 3! A represent for all, not, implies, there exists, a unique, and, respectively. The iv) If P o< Q and P o< R, then not 0 > R. 8. In the axiomatic system ;)Vlth tll;e un(;ieﬁned“terms
variable R represents the relation is on.) If the entire axiomatic system, including the a) Prove that there are at least six points. point and between,: use P(Q)R to denote “Q is
i i : : . between P and R Define a set S to be convex iff
rules of proqf, is encfoded into such a formal language, we can mechanically determine b) Suppose that you omit axiom (iv). Can you still whenever P and R are in S and P(Q)R, then Q is
whether a given string of symbols encodes a logical proof of the string of symbols -~ prove that there are at least six points? If so, i §. The axioms ate’
encoding the theorem. There will be no risk of an inappropriate inference, but there prove it; otherwise find the largest number of i) If P(Q)R, then R(Q)P
will be an incredible barrier to human understanding. Indeed, finding a proof in such a “ points that must exist and prove your answer. l ’ )
language is a daunting task. ¢) Suppose that we change axiom (iii) to require i) If P(Q)R, then not P(R)Q and P # R.
Axiomatic systems are a workable compromise between the austere formal lan- exactly four distinct points adjacent to any point a) Prove that, if P(Q)R, then not Q(R)P, not
guages of mathematical logic and Euclid’s work, with its many implicit assumptions. but leave the other axioms unchanged. How many R(P)Q, and not Q(P)R.
Mathematicians need both the careful reasoning of proofs and the intuitive understand- points must exist? Prove your answer. Generalize. b) Prove that, if P(Q)R then P, Q, and R are three
ing of content. Axiomatic systems provide more than a way to give careful proofs. They 7. Consider the axiomatic system with the undefined distinct points.
enable us to understand the relationship of particular concepts, to explore the conse- terms point, line, and on and the following axioms. ¢) Compare the axioms and parts (a) and (b) of this
quences of assumptions, to contrast different systems, and to unify seemingly disparate i) There are a line and a point not on that line. problem with Hilbert’s axioms of order 1I-1, II-2,
situations under one framework. In short, axiomatic systems are one important way in ii) Every two distinct points have a unique line on and II-3.
which mathematicians obtain insight. (Heath’s edition of Euclid’s Elements [13] pro- them both. d) Prove that, if S and T are convex, then SN T is
vides detailed commentary on its logical shortcomings. Wilder [29] explores axiomatic » iii) Every two distinct lines have at least one point also convex.
systems in more detail.) on them both. e) If each S; is convex, for i in a finite or infinite
iv) Every line has at least three points on it. index set I, prove that.ﬂie, Si is convex, where
PROBLEMS FOR SECTION 1.3 Mier Si=(P:foralliel, P €5},
1. a) From Group I of Hilbert’s axioms, how many b) Define a convex set from Hilbert’s undefined
points and lines must exist? Prove your answer. terms. Are the interior of an angle and of a

triangle, as you defined them, convex? Justify
your answer.

b) Given two distinct lines prove from Group I of
Hilbert’s axioms that at most one point lies on
both lines. 5. a) List which of Hilbert’s axioms can refer to points

¢) Include axiom IV-1 and repeat part (a). on just one line.

2. a) Compare Hilbert’s axiom II-4 with Euclid I-7. b) Use the axioms in part (a) that are in groups I

b) Read in Euclid’s Elements [13, vol. 1, 247f] the ?;‘I‘fnltl ;‘J’S?:ﬁ ‘;L‘cﬁt’:(')f]]y A Pl ey e
proofs of I-4 and I-7 and discuss the logical gaps i ’

in these proofs. ¢) Fix Py and P; on a line m. Use the axioms

; s 5 o~ in part (a) to prove by induction that for all
3. Discuss how well Euclid’s definition of an angle positive integers n there are points P, on m such

l()number 8) _ﬁts your intuition and how easy it would that P, is between Py and P,; and such that
e to apply in a proof. . P, Py = PO P,

4. a) Use Hilbert’s definition of an angle to define
the interior of an angle. Define a triangle and
its interior. How does the interior of a triangle
relate to the interiors of its angles? Illustrate your
definitions.

d) In the notation of part (c), what properties should
P_, satisfy? Prove that there are points that
satisfy these properties.

e) Which axiom(s) guarantee(s) that between two
points on a line there is a third point?




