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1.2 CoNSTRUCTIONS, CONGRUENCE, AND PARALLELS: EUCLID’S
APPROACH TO GEOMETRY

Euclid’s masterpiece, Elements, exemplifies Greek mathematics; it is an axiomatic sys-
tem about ideal geometric forms. The modern understanding of axiomatic systems (Sec-
tions 1.3 and 1.4) and non-Euclidean geometries (Chapter 3) arose from careful reflec-
tion on Euclid’s work. Euclid’s axiomatic system and these developments have greatly
influenced modern mathematics and thus provide ample reason to study Euclid. High
school geometry courses, based on Euclid’s approach, provide another reason to look
at the Elements in some detail. In this section we consider constructions, congruence,
and parallel lines—all familiar topics of high school geometry found in the Elements. In
Section 1.5 we consider similarity, another high school topic based on Euclid’s work.

Euclid united his own work with that of his predecessors. However, he didn’t
indicate which of the 465 theorems he discovered, and his text was so successful that
no prior geometry text was preserved. Scholars credit Euclid with the organization, the
choice of axioms (his postulates and common notions), and some of the theorems and
proofs. Euclid sought to achieve Aristotle’s goal of starting with self-evident truths and
proving all other properties from these assumptions.

1.2.1 Constructions

Euclid’s first three postulates and many of his propositions reflect the growth of for-
mal geometry from constructions—figures built from line segments and circles. (See
Appendix A for the postulates, definitions and propositions of Book I of Euclid’s
Elements; proposition n of book I is denoted I-n.) Euclid assumed the construction of
a line segment given the end points (postulate 1, in Appendix A), the extension of a line
segment (postulate 2, in Appendix A), and the construction of a circle given the center
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Example 1

Example 2

Example 3

and the radius (postulate 3, in Appendix A). By long tradition from Greek to modern
times only an unmarked straightedge and a compass can be used in constructions.

Construct a square if you know one side of it, say, AB.

Solution.  First construct (following Euclid I-11) BC, the the perpendicular to AB at B
(Fig. 1.11). Construct the circle with center B and radius A B (postulate 3, in Appendix
A). Extend AB (postulate 2, in Appendix A) until it intersects the circle again, say, at Z.
Construct circles with centers A and Z and radii AZ. Let X and Y be their intersections
and construct XY (postulate 1, in Appendix A). Explain why XY is the perpendicular
bisector of AZ. Let C be an intersection of XY and the circle centered at B. Then BC
is a second side of the square. Construct the rest of the square similarly. e

Construct a regular pentagon if you know one side of it.

Solution. . Construct a segment P Q such that PQ=(14++/5AB)2 (Fig. 1.12). By
Problem 5 of Section 1.1, P Q is the length of the he diagonal of the pentagon. Let Let ORST
be a square whose sides are the same length as AB. Find the midpoint U of OR, using
the perpendicular bisector of QR Construct the circle with center U and radius US.
One of its intersections with QR is the desired point P. The Pythagorean theorem (I-
47) shows that P Q is as long as claimed.

Fig. 1.13 shows the construction of the pentagon. The circle with center A and
radius A B intersects the circle with center at B and radius PQ at E. Similarly, points C
and D are the intersections of circles centered at A and B of appropriate radii. Construct
AB,BC,CD, DE, and AE. Explain why ABCDE is a regular pentagon. e

Construct the tangents to a circle from an outside point.

Solution. Let P be outside the circle with center C (Flg 1.14). Construct the midpoint
M of CP and the circle with center M and radius MC. This circle intersects the original
circle in two points, A and B. Then PA and P B are tangent to the circle through P.
Problem 9 provides a way to justify that /PAC and /P BC are right angles. e
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1.2.2 Congruence and equality

Euclid’s fourth postulate, “All right angles are equal,” introduces a second theme, the
equality of figures. He used two senses of equal: congruent and equal in measure (length,
angle, area, or volume). Intuitively, we know that congruent figures coincide if one
is placed on the other. Moving figures leads naturally to transformational geometry,
which we discuss in Chapter 4. However, Euclid focused on showing that two figures
are congruent from the equal measures of various parts. Thus Euclid proves the three
well-known triangle congruence theorems side-angle-side or SAS (1-4), side-side-side
or SSS (I-8), and angle-angle-side or AAS (I-26).

Euclid didn’t think of lengths, areas, and volumes as numbers, so he studied them
without formulas. For example, he showed that for parallelograms with the same height,
their areas were proportional to the lengths of their bases. Then to compare the areas of

any two polygons, he constructed two parallelograms with the same areas (I-45) and
compared the parallelograms.

1.2.3 Parallels

Definition 1.2.1

Example 4

Euclid proved the familiar theorems of high school geometry about parallel lines cut by
transversals, that is, lines intersecting both parallel lines. Euclid’s first four postulates
allow construction of parallel lines.

Two lines k and m in the Euclidean plane are parallel (k|im) if and only if (iff) they
have no points in common or they are equal.

Using a line k and a point P not on k, construct a line m parallel to k with P on m.

Solution. Construct [, the perpendicular to k on P, and construct m, the perpendicular
to !l on P. Then'm is parallel to k by I-27. We can generalize this construction with any
line !’ through P intersecting k, rather than the perpendicular (Fig. 1.15). Proposition I-8
ensures that the two angles at P and Q are congruent, and I-28 guarantees that m||k. @

Euclid’s fifth postulate was essential to proving the most important of his theorems.
This assumption dissatisfied many mathematicians because it seemed far from self-
evident and too complicated to qualify as a postulate. Many mathematicians from 200
B.C. until A.D. 1800 tried unsuccessfully to prove Euclid’s fifth postulate from his other
assumptions. Historians believe that Euclid wasn’t completely comfortable with his fifth
postulate, for he postponed using it until proposition 1-29. Playfair’s axiom, an easier

Q’ m P
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Figure 1.15
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Exercise 1

Theorem 1.2.1

statement about parallel lines, is equivalent to the fifth postulate if we accept Euclid’s
first 28 propositions. (Two statements A and B are logically equivalent provided that
we can prove both “If A, then B” and its converse “If B, then A”.)

Euclid’s Fifth Postulate That, if a straight line falling on two straight lines makes
the interior angles on the same side less than two right angles, the two straight lines, if
produced indefinitely, meet on the side on which are the angles less than the two right
angles.

Playfair’s Axiom If a point P is not on a line k, then there is on P at most one line
m that does not intersect k.

Illustrate Euclid’s fifth postulate and Playfair’s axiom. Explain how they relate to each
other.

Euclid’s fifth postulate is equivalent to Playfair’s axiom, assuming that Euclid’s first 28
propositions hold.

Proof. (Euclid = Playfair) Suppose that the fifth postulate holds and that we are glven
a point P not on a line k. Example 4 gives us one parallel, say, PR where PQ is
perpendlcular to PR and k, as shown in Fig. 1.16. For Playfalr s axiom we need to show
that PR is the only parallel to k through P. We let WV be any other line on P with P
between V and W. As WV is not PR either /V P Q is acute or /W P Q is acute. Then
WLOG we assume /W P Q to be acute. We now have fulfilled the hypothesxs of the fifth
postulate: /W P Q and /P QU together measure less than 180°. Hence wv must meet
k, showing there is only one parallel to k on P.

L
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Figure 1.17

(Playfair = Buclid) Suppose that Playfair’s axiom holds and BC falls on AB
and CD so that m/ABC +m/BCD < 180°. We must show that AB and CD meet
on the side of A and D. We construct tbgline CE, as shown in Fig. 1.17, such that
/BCE = /CBF. By Example 4, CE||AB. Playfair’s axiom states that there is only
one parallel, meaning that C D must intersect A B, say, at G. However, Playfair’s axiom
does not tell us directly on which side of B this point G lies. Note that we have a triangle
ABCG. Euclid I-17 guarantees that the measures of any two angles of ABCG add
to less than 180°. Our original assumption about angles /ABC and /BC D fits I-17
perfectly, but that isn’t enough. We must show that the angles on the other side, /FBC
and /HCB, do not satisfy I-17. The measures of all four of these angles must add to
360°, and we assumed that the first two add to less than 180°. Hence the last two must
add to more than 180°, implying that they are not part of the triangle ABCG. Hence G
is indeed on the same side of Bas Ais. =

1.2.4 The Greek legacy

Three unsuccessful Greek constructions also inspired the development of mathematics.
The first, called doubling the cube, was to construct (the side of ) a cube with twice the
volume of a given cube. The second was trisecting an angle. The third, squaring the
circle, was to construct a square with the same area as a given circle. The Greeks did
find exact constructions for these problems using methods beyond a straightedge and
compass. In fact, the development of conics (ellipses, parabolas, and hyperbolas) was
connected with doubling the cube and trisecting an angle. Related to the third problem,
Archimedes, the greatest mathematician of the ancient world, proved that the area of a
circle equaled the area of a triangle whose height was the radius of the circle and whose
base was the circumference of the circle.

Not until the nineteenth century were mathematicians able to prove that these three
constructions were impossible with only an unmarked straightedge and compass. Many
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ARCHIMEDES

Archimedes (287-212 B.C.) was the greatest mathematician of the ancient world, and its
outstanding engineer and physicist. Many legends attest to his engineering feats, as well
as to his absent-mindedness. Upon understanding his law of the lever, as illustrated by

the figure, Archimedes is supposed to have claimed, “Give me a place to stand and I will
move the world.”

Archimedes’ law of the lever: The mass of one weight times its distance from the
fulcrum equals the mass of the other weight times its distance from the fulcrum.

The story continues with the King of Syracuse asking for a practical demonstration of
mechanical advantage. So, by himself, Archimedes pulled a fully loaded ship up a beach
by using a sophisticated arrangement of pulleys. Another time the King asked Archimedes
to determine, without harming it, if his new crown was made entirely of gold. In a bath
Archimedes grasped the principle of the buoyancy of water and so found a solution to

‘the King's problem. In the excitement of discovery, Archimedes ran naked from the bath

shouting “Eureka!”, meaning “I have found it!” He apparently forgot the world about him
when he worked on a problem—drawing figures in ashes or on the oil rubbed on him
after a bath. During the extended Roman siege of Syracuse, Archimedes designed various
machines that greatly helped in its defense and intimidated the Roman soldiers. He was
killed by a soldier when the Romans finally won.

Archimedes brought great imagination and supreme mathematical expertise to his
mathematical investigations. He found and proved many theorems, including the exact
area of a circle and a parabolic section. His most famous results give the surface area and
the volume of a sphere. He also proved theorems concerning tangents and the centers of
gravity for various shapes. A number of problems in this chapter concern other results
of Archimedes. He brilliantly used the particular geometric properties of each shape he
considered. Archimedes’ mathematics went beyond his elegant geometric proofs. He gave
upper and lower estimates for . In the “Sand Reckoner” he devised a number system
that could handle huge numbers, including his estimate of the number of grains of sand
in the earth. In “The Method,” a treatise rediscovered in 1906 after being lost for more
than a thousand years, he explained how he used his law of the lever to discover new
mathematical results that he later proved rigorously.

Archimedes’ geometry epitomized Greek mathematical thought. His flawless proofs of
difficult theorems were unsurpassed for more than 1500 years. His work also showed the
limitations of Greek mathematics. Each result required its own ingenious approach for its
proof, unlike calculus and other modern mathematics. Archimedes’ writings in physics
and mathematics inspired scholars for centuries, especially during the Renaissance. Even
today the beauty of Archimedes’ mathematics reminds us of what is best in mathematics.
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people misinterpret this impossibility, thinking that mathematicians just haven’t been
clever enough to find constructions. Thus people still propose solutions for these ancient
problems. These proofs require abstract algebra and are beyond the scope of this text.
(See Gallian [11].) In brief, mathematicians converted the geometric problem of what
lengths were constructible with straightedge and compass into an algebraic problem
about what irrational numbers could be written in a particular form by using rational
numbers, repeated square roots, and arithmetic operations. Both doubling the cube and
trisecting an angle involve cubic equations whose roots cannot in general be written
in that particular form. Pierre Wantzel proved the impossibility of these constructions in
1837. To square the circle requires the construction of 77, which also cannot be written in
the form just described. Ferdinand Lindemann proved this assertion in 1882 by proving
that v was transcendental; that is, it is not the root of any polynomial whose coefficients
are rational numbers.

The decomposition of a figure, another aspect of Euclid’s geometry, led to other
modern investigations. Euclid proved that certain shapes had the same area by decom-
posing one shape into smaller pieces that could be reassembled to form the other shape.
Decomposition puzzles have been popular for centuries, especially the Chinese Tan-
gram puzzle. W. Bolyai in 1832 and P. Gerwien in 1833 independently showed that
two polygons in the plane with the same area could be decomposed into one another
by using finitely many smaller polygons. (See Boltyanskii [3].) In Chapter 3, we use
decomposition to examine area in hyperbolic geometry.

David Hilbert posed the corresponding problem for three-dimensions in a famous
talk in 1900, when he presented a list of 23 important, unsolved problems. The same
year Max Dehn proved that a regular tetrahedron (triangular pyramid) could not be cut
into finitely many polyhedra and then reassembled to form a cube. This and other results
showed that a theory of volumes of polyhedra needed limit arguments for rigorous
proofs. (See Boltyanskii [3].)

Euclid’s Elements included results now considered to be part of number theory,
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Figure 1.18

d) Construct segment of lengths /x and ¥x.
Generalize.

e) Construct a segment of length v/1 + +/2.

. Begin with a circle and construct the following

regular inscribed polygons. You may use earlier
constructions in later ones. (An n-sided polygon,
or n-gon, is a set of distinct vertices Py, Py, wwsg
P, in a plane and the edges (line segments) P P,,
P,Ps, ..., P,P;, with the condition that two
edges intersect only at their endpoints. A polygon
is inscribed in a figure only if the vertices of the
polygon are on that figure and the rest of the polygon
is in the interior of the figure. A polygon is regular
only if all the edges and angles are congruent.)

a) An equilateral triangle

¢) A hexagon
d) An octagon
e) A dodecagon (12-gon)

f) Explain how to inscribe a regular 2n-gon from
one with n sides.

Remarks Carl F. Gauss discovered in 1801 which
regular polygons could be constructed with straightedge
and compass. He showed that, if the number of sides
is a product of a power of 2 and distinct primes of the
form (22k + 1), the regular polygon is constructible. The
only known primes of this form, called Fermat primes,
are 3, 5, 17, 257, and 65,537. Gauss actually constructed
a regular 17-gon in 1796. He conjectured and Pierre
Wantzel proved in 1837 that no other regular polygons
are constructible by straightedge and compass alone.

algebra, and irrational numbers. Mathematicians learned from Euclid’s text for two b) A square :
thousand years, and many important developments in mathematics stem from it. The a power of two or
Elements richly deserves its reputation as the most important mathematics book ever
written. (See Kline [18, Chapters 4 and 5] for more historical information.) C
PROBLEMS FOR SECTION 1.2
1. a) Identify which of Euclid’s first 48 propositions b) In Fig. 1.18, OS|IRT. Explain how PQ, PR,
(Appendix A) concern constructions. PS, and PT are related.
b) Repeat part (a), replacing constructions with ¢) Use part (b) to construct the lengths a - b and
congruence. a/b, given a unit length and the lengths a and b.
¢) Repeat part (a), replacing constructions with 3. a) In Fig. 1.19, let AD =1 and BD = x. Explain
equality of measure. why CD = ./x.
d) Repeat part (a), replacing constructions with b) Let M be the midpoint of AB and use algebra to ] K
parallels. show that CM = AM = BM and so A, B, and C A B I 5
2. a) For lengths a and b, with a > b, construct a + b are on a circle centered at M. M D

anda — b. ¢) Use segments of length 1 and x to construct a

Figure 1.19
segment of length ,/x. gure
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5. a) Construct the circumscribed circle for a triangle.

Chapter 1 Euclidean Geometry

Figure 1.20

b) Construct the inscribed circle—the circle tangent

to the three sides—for a triangle.

. Use SAS, SSS, and AAS to find and prove the

congruence of the four pairs of triangles shown in
Fig. 1.20.

. In Fig. 1.21 assume that AD = BC and /ADC =

/BCD. Use only Euclid’s first 28 propositions in
your proofs.

a) Prove that /DAB = /CBA. [Hint: Find two

E

pairs of congruent triangles formed with the
given sides and the two diagonals.]

b) If E is the midpoint of CD and F is the midpoint
of AB, show that EF is perpendicular to both
AB and CD. [Hint: Draw DF and CF ]

. Recall that a parallelogram is a quadrilateral whose

opposite sides are parallel. Use only Euclid’s first 29
propositions in your proofs.

a) Prove that opposite sides of a parallelogram are
congruent.

Figure 1.21
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Figure 1.22

b) If AB||CD and AB = CD, prove that ABCD
is a parallelogram. If AB|CD and AC = BD,
must ABC D be a parallelogram? Explain.

¢) Prove that a quadrilateral is a parallelogram iff
the diagonals bisect each other.

9. Prove that in a circle, the central angle is twice the

inscribed angle. That is, in Fig. 1.22, m/ACD is

twice m/AB D, where C is the center of the circle.
[Hint: Draw the diameter through B and use the
isosceles triangles ABCA and ABCD.]

10. a) Rewrite Euclid II-13 and explain why it is

equivalent to the law of cosines for an acute
angle. [Hint: Examine Fig. 1.23.]

Figure 1.23
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Proposition II-13: In a triangle, the square on the side
subtending an acute angle is less than the squares on the
sides containing the acute angle by twice the rectangle
contained by one of the sides about the acute angle,
namely, that on which the perpendicular falls, and the
straight line cut off within by the perpendicular toward
the acute angle.

The law of cosines: In any triangle with sides of length
a, b,and ¢, ¢ = a? + b% — 2ab cos(C), where C is the
angle opposite side c.

b) Prove your reformulation of Euclid II-13 by using
the Pythagorean theorem.

¢) Does your proof in part (b) hold if the angle is
obtuse? If so, explain why; if not, modify it to
hold. (Euclid II-12 handles the obtuse case.)

11. Two quadrilaterals ABCD and EFGH are clearly
congruent if all corresponding sides, angles, and
diagonals are congruent. Look for smaller sets
of these correspondences, which are sufficient for
convex quadrilaterals.

a) Give an example to show that the congruence of
the four pairs of sides (SSSS) is not sufficient.
This insufficiency illustrates a basic engineer-
ing property: triangles are rigid (SSS); other
polygons need triangular bracing to be rigid.

b) A diagonal brace (SSSSD) ensures congruence
for convex quadrilaterals. State SSSSD clearly
and completely; prove it.

c) State AAAS clearly and completely. Either prove
that AAAS is a congruence theorem for convex
quadrilaterals or find a counterexample.

12.

d) Repeat part (c) for SASAA, SAASA, and
SASSS.

e) In Fig. 1.24, ABCD and EFGH satisty AB
ZEF,BC=FG,CD=GH, DA~ HE, and
BD = FH, yet they are not congruent. Explain
why this situation does not contradict part (b). If
they exist, find similar examples for SASAA and
SASSS.

Begin with a unit length and investigate what other
lengths are constructible with a straightedge and
compass.

a) Use Problem 2 to describe how to construct
integer and rational lengths.

b) Use Problems 2 and 3 to describe how to
construct lengths corresponding to numbers built
from rational numbers by using square roots and
the four arithmetic operations (+, —,x, +). Call
such numbers constructible.

¢) Recall that a straight line has a first-degree
equation ax + by + ¢ =0 and that a circle
has a second-degree equation x2 + y? + dx +
ey + f =0. Suppose that the coefficients of
two lines, two circles, or a line and a circle
are all constructible numbers. Explain why the
coordinates of the intersections of these lines
and circles must also be constructible numbers.
[Hint: Remember the quadratic formula.]

d) Let (s,t) and (u, v) be the coordinates of two
points in the plane. Find the equation of the
line through these two points. Explain why
the coefficients of this equation can be written

E

Figure 1.24

13.
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in terms of s, ¢, u, v, and the four arithmetic
operations.

e) Repeat part (d) for the circle with center (s, 1)
and passing through (u, v).

f) Explain why parts (c), (d), and (e) ensure
that, if the coordinates of the given points are
constructible numbers, the coordinates of any
points that you can construct with lines and
circles through these points are constructible
numbers.

Trisecting an angle generally involves a cubic
equation. An angle is constructible only if given
a length, you can construct two other lengths such
that the three form a triangle with the desired angle.

a) Show that an angle is constructible iff the cosine
of that angle is constructible. Draw a
diagram.

b) Use trigonometry to show that cos(3z) =
4 cos3(z) — 3 cos(z).

¢) If the cosine of a constructible angle is b,
show that you can trisect that angle only if
you can construct a segment whose length x
satisfies the equation 4x> — 3x = b. [Incidentally,

x=(\3/b+~/b2—l+\3/b—\/b2—l)/2.]

14. A well-known method for trisecting an angle
requires the marking of a particular length on the
straightedge, a slightly stronger condition than an
unmarked straightedge. Explain why the following
method trisects any angle. [Hint: Draw DM, use
Problem 3(b), and look for isosceles triangles. ]

InFig. 1.25 /ABC is the angle to trisect, D is any
point on AB, DE is perpendicular to BC, and DF
is parallel to BC. On the straightedge mark a length
Y Z twice BD. Place the straightedge so that it goes
through B and so Y is on the segment DE. Slide
the straightedge around, keeping the previous two
conditions satisfied, until point Z is on the ray DF.
In Fig. 1.25, points Y’ and Z' indicate the correct
positions of ¥ and Z. M is the midpoint of Y'Z’.
Claim: m/C BZ' is one-third of m/ABC.

15. Prove that the following are equivalent to Playfair’s
axiom, using Euclid’s first 28 propositions and
Theorem 1.2.1. Draw diagrams.

a) If a straight line cuts one of two parallel lines, it
cuts the other.

b) Given two parallel lines and a transversal, the
alternate interior angles are congruent (Euclid
1-29).

¢) If k||l and [||m, then k|lm (Euclid 1-30).

e

Figure 1.25



