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Euclidean Geometry

Geodesic domes, such as the U.S. Pavilion at Expo 67,
satisfy pragmatic engineering demands with an elegant geometric
shape. Buckminster Fuller used elementary two- and three-
dimensional geometry, familiar to mathematicians for more than
2000 years, to fashion the first geodesic domes in the 1950s.
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Chapter 1

Euclidean Geometry

ATEQMETPHTOYX MHAEIX EIZITS2
“Let no one unversed in geometry enter here.”
(the inscription Plato is said to have
placed over the entrance to his Academy)

1.1 OVERVIEW AND HISTORY

Geometry has a rich heritage as well as contemporary importance. We begin this chapter
with a historical examination, focusing on the fundamental contributions of the ancient
Greeks. We discuss modern critiques of this foundation and newer geometry stemming
from that early work. We also investigate axiomatic systems and models.

Geometric understanding developed in all ancient cultures, consisting largely of ge-
ometric patterns and empirical methods for finding areas and volumes of various shapes.
The best preserved and most developed pre-Greek mathematics came from Egypt and
Babylonia. An Egyptian papyrus dated 1850 B.c. gave an exact procedure for finding
the volume of a truncated square pyramid. However, the Egyptians were probably not
aware that it was exact or which of their other methods, such as finding the area of a
circle, were not exact. A century earlier (by 1950 B.c.) the Babylonians possessed a so-
phisticated number system and methods to solve problems that we would describe as
first- and second-degree equations in one and two variables. The Babylonians, among
others, used what we call the Pythagorean theorem. Although Egyptian and Babylonian
mathematics dealt with specific numbers rather than general formulas, the variety of ex-
amples that survived convinces scholars that these peoples understood the generality of
their methods.

1.1.1 Euclid, the Pythagoreans, and Zeno

The heritage of deductive mathematics started in ancient Greece and was built on
the work of the Babylonians and Egyptians. The Greeks discovered and proved many
mathematical properties, including the familiar ones of high school geometry. They also
organized this knowledge into an axiomatic system, now known as Euclidean geometry,
which honors the Greek mathematician Euclid. We know little about Euclid (circa 300
B.C.) except his mathematics, including the most influential mathematics book of all
time: the Elements [13]. In it he organized virtually all the elementary mathematics
known at the time into a coherent whole. The Elements contains definitions, axioms,
and 465 theorems and their proofs—but no explanations or applications. For centuries
this format represented the ideal for mathematicians and influenced many other areas of
knowledge. The Greeks called an axiomatic approach synthetic because it synthesizes
(proves) new results from statements already known. The Greeks often used a process
they called analysis to discover new results that they then proved. They analyzed a
problem by assuming the desired solution and worked backward to something known.
We mimic this procedure in analytic geometry and algebra by assuming that there is
an answer, the unknown x, and solving for it. In modern times synthetic geometry has

Theorem 1.1.1
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come to mean geometry without coordinates because coordinates are central to analytic
geometry.

The Pythagoreans, followers of Pythagoras (580 to 500 B.c.), were among the
first groups to focus on theoretical mathematics. Although the Pythagorean theorem
had been known at least in numerical form in many cultures, the Pythagoreans are
credited with proving this key link between geometry and numbers. The Pythagoreans
built their mathematics and their mystical musings on positive whole numbers and
their ratios, proportions, and properties. The Pythagoreans developed the theory of
positive whole numbers, investigating prime numbers, square numbers, and triangular
numbers, among others. They also developed geometric proofs. There is evidence that
the Pythagoreans found the proof of Theorem 1.1.1, a theorem as fundamental as the
Pythagorean theorem. (See Heath [13, vol. I, 317-320].)

Notation.  We use the following notation. The line segment between two points A and
B is denoted AB, the length of AB is denoted AB, and the line through A and B is
denoted :4_[; The triangle with vertices A, B, and C is denoted AABC, and the angle
of that triangle with vertex at B is denoted /A BC. We abbreviate “sum of the measures
of the angles” as angle sum.

In Euclidean geometry the angle sum of a triangle is 180°.

Proof. Let AABC be any triangle and construct the line DE parallel to BC through A
(Fig. 1.1). Then (by Euclid’s proposition I-29) /DAB = /CBA and /CAE = /ACB.
Thus the three angles of the triangle are congruent to the three angles /DAB, /BAC,
and /CAE that comprise a straight angle. Hence the angle sum of the triangle equals
the measure of a straight angle, 180°. =

The Pythagorean attempt to ground mathematics on numbers ran into an irreconcil-
able conflict with their discovery of incommensurables (irrational numbers, in modern
terms). Commensurable lengths have a common measure—a unit length such that the
given lengths are integer multiples of the unit. For example, % and ‘51 have ]’~5 as a com-
mon measure. The Pythagoreans proved that the diagonal and side of a square were
incommensurable. We say that the diagonal is +/2 times as long as the side and that V2

is not a rational number. Recall that a rational number can be written as a fraction.
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Figure 1.1
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Theorem 1.1.2  No rational number equals +/2. (The diagonal of a square is incommensurable with the
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side.)

Proof.  Suppose, for a contradiction, that there were two integers p and g such that
plq = +/2. Without loss of generality (WLOG), assume that p and q are not both even:
otherwise we could factor out any common factors of 2. Then ( p/9)?> =2, or p?=24>
Thus p? must be an even number; which in turn, forces p to be even. (To illustrate,
suppose for a moment that p is odd, say, p = 2k + 1. Then p? =4k? + 4k + 1, an odd
number.) If we rewrite the even number p as 2r, for some integer r, then (2r)% = 2q2,
or more simply 2r? = 2. As before, we deduce that q must be even. However, p and g

are not both even, giving us a contradiction. Thus our initial supposition is invalid, and
/2 is not a rational number. ®

Modify the proof of Theorem 1.1.2 to prove that +/3 is not rational. Explain where the
corresponding argument fails when you try to show that +/4 is not rational.

Theorem 1.1.2 ruined the Pythagorean’s philosophical commitment to explain ev-
erything in terms of whole numbers and their ratios. This and other philosophical
problems led later Greek mathematicians to base their mathematics on geometry. For
example, they no longer thought of lengths, areas, and volumes as numbers because
these values could be irrational. The lack of rational numbers for measurement ruled out
geometric formulas. Nevertheless, the Greeks made impressive advances in geome-
try and developed careful, well-founded proofs. The theoretical, abstract nature of
Greek mathematics separated it from practical and computational mathematics. How-
ever, modern scientists and mathematicians have found important applications of Greek
discoveries and the theoretical approach.

Zeno’s paradoxes—and the irrationality of ﬁ~spuned a careful study of the
foundations of geometry. Zeno (circa 450 B.c.) proposed four paradoxes purporting to
disprove obvious facts about motion. Zeno’s most famous paradox, Achilles and the
Tortoise, continues to puzzle people. (See Salmon [26].)

Achilles and the Tortoise.

Exercise 2

Achilles, the swiftest human, gives a tortoise a head start in a race. Zeno argued that
Achilles can never pass the tortoise. For Achilles to catch the tortoise, he must first run
to where the tortoise started, but by then the tortoise will have crawled a bit farther.
Achilles must now run to this new place, but the tortoise will then be a tiny bit farther
along. No matter how often this process is repeated and no matter how small the
tortoise’s lead, Achilles always remains behind.

Zeno’s argument is paradoxical because each step seems reasonable, yet we know that
faster things regularly pass slower ones. Discuss this paradox, trying especially to find
an error in Zeno’s argument.

1.1.2 Plato and Aristotle

The school of philosophy founded by Plato (429-348 B.c.) next took the lead in the study
of geometry. One of Plato’s pupils, Eudoxus, developed a theory of proportion and a way
to give careful proofs of sophisticated results that applied equally to commensurables
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and incommensurables. Furthermore, Eudoxus’s work, like limits in calculus, avoided
Zeno’s paradoxes altogether. Another pupil, Theaetetus, developed a classification of
incommensurable lengths and gave the first proof that there are five regular polyhedra.

Plato viewed geometry as vital training for philosophy. He thought that only those
who understood the truths of geometry could grasp philosophical truths. In his view,
mathematics was certain because it was about ideal, eternal truths, and mathematics
was applicable because the physical world was an imperfect reflection of the ideal truth.

Now mathematics is often viewed as part of science with its emphasis on physical
reality rather than Plato’s ideal view. But mathematics, with its astounding certainty
that surpasses any other subject’s reliability, seems to have a different content than any
science. After all, no one can physically measure 7 to one hundred place accuracy, let
alone the more than one billion places that have been found with the aid of computers.
Obviously, though, mathematics is not isolated from the real world, as its sophisticated
and varied applications reveal.

Aristotle (384-322 B.c.), Plato’s most famous student, established his own school
of philosophy. Aristotle considered mathematics to be an abstraction of concrete experi-
ence. Thus for him the applicability of mathematics derived from its origin in the world.
Aristotle thought that mathematics owed its certainty to its careful proofs. He empha-
sized the necessity of starting with simple, unquestionable truths (axioms or postulates)
and carefully proving all other truths from them. His work on logic set the standards
of reasoning for two thousand years just as his contributions to many other areas—
science, law, ethics and esthetics—profoundly influenced Western culture. (See Kline
[18, Chapters 1-3] for more information on ancient, including Greek, mathematics.)

PROBLEMS FOR SECTION 1.1

In any problems requiring proofs, you may assume any
common geometric properties you know, as long as you
make your assumptions explicit. \

1. The Egyptians used the square of g of the diameter \
for the area of a circle. In measuring a cylindrical
granary with a height of 20 ft and a radius of 10 ft, \
what error in cubic feet and as a percentage would . \
the Egyptians have made? Find the value of k in \
(84/9)* = kr®. (The Egyptian method effectively [ _ _ _ _ _| alig = Xy
approximates 7 by k, but it is historically misleading
to talk about an “Egyptian value of .”)

2. Figure 1.2 shows a truncated pyramid. The following N\

is the Egyptian recipe for the volume of a truncated N

square pyramid with a height of 6 and lengths »
of 4 at the base and 2 at the top: “You are to
square this 4; result 16. You are to double 4;
result 8. You are to square 2; result 4. You are Figure 1.2
to add the 16, the 8, and the 4; result 28. You
are to take one third of 6; result 2. You are to
take 28 twice; result 56. See, it is 56. You will
find it right.” Verify that this recipe corresponds

to the modern formula V = %h(a2 + ab + b?).
Then derive this formula from V = %H A for the
volume of a pyramid with height H and base



area A. [Hint: A truncated pyramid is the difference
between an entire pyramid and a smaller pyramid
removed from the top. Use proportions to relate the
bases and heights of these two pyramids. Note that
a® — b3 = (a®> + ab + b*)(a — b).]

A diagram like that shown in Fig. 1.3 appears on
a Babylonian tablet, but written in their base 60
notation. Convert these fractions to decimals and

discuss what the numbers tell you about Babylonian
mathematics.

24 s 10
1+g@+ * 316000

60 ° 3600

25 , 35
42 + = + =2
* %0 * 3600

Figure 1.3

An (abbreviated) Babylonian problem reads “ . . .
1 added the length and the width and [the result is]
6.5 GAR. . . . [The area is] 7.5 SAR. . . . What are
the length and width?” (1 GAR is almost 20 ft, and a
SAR is a square GAR.)

a) Solve this problem with modern methods.
Explain your approach.

b) Verify the quadratic formula
(—b % v/b% — 4ac)/2a reduces to
—b/2+ /(b)) —cfora=1.

¢) Use part (b) to discuss the scribe’s recipe for
solving this problem:
Halve the length and width which I added
together, and you will get 3.25. Square 3.25 and
you will get 10.5625. Subtract 7.5 from 10.5625,
and you will get 3.2625. Take its square root, and
you will get 1.75. Add it to the one, subtract it
from the other, and you will get the length and

the width. 5 GAR is the length; 1.5 GAR is the
width. . . . Such is the procedure.

5. The Pythagoreans thought that the pentagram, a

pentagon with its diagonals, as shown in Fig 1.4, had
mystical qualities.

Figure 1.4

a) Find the measures of the following angles.
LAOB, LOBA, (ABC, [BAC, [AGB,
(CGB, /ABH,and /CAD.

b) Verify that AABC and AAG B are isosceles and
similar. List other similar triangles. If AB = 1
and AG = x, explain why AC =1 + x. [Hint:
Use ABCG.]

c¢) Explain why in part (b) x satisfies 1 +x = 1/x.
Find the exact value of 1 + x, the diagonal of
the pentagon. Verify that the ratio of AG to GH
is also 1 + x. The number 1 + x = 1.618, the
golden ratio, appears in many natural settings
and applications. (See Huntley [16].)

. Assume that any diagonal of a convex polygon is

inside it.

a) Find the angle sum of a convex quadrilateral,
pentagon, and hexagon.

b) Find the angle sum of a convex n-gon. Prove it
with induction.

¢) What happens if the polygon in part (b) is not
"~ convex?
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Figure 1.5

. a) Find all rectangles with sides of integer lengths

whose perimeters equal their areas. (The
Pythagoreans considered this problem, but later
Greeks did not because they didn’t consider areas
and lengths as numbers.)

b) Find a formula for all rectangles whose perime-
ters equal their areas. Use this formula to explain
your answer in part (a).

¢) Repeat part (a) for rectangular boxes whose
surface areas equal their volumes.

. Eratosthenes (circa 284-192 B.c.) made the most

famous and accurate of the Greeks’ estimates of
the circumference of the earth. He found that at
noon on the summer solstice, the sun was directly
overhead at Syene, Egypt; at the same time 5000
stadia (approximately 500 mi) north, in Alexandria,
Egypt, the sun was slo of a circle off vertical. Make
a diagram, compute the circumference of the earth
based on his data and explain your procedure. [Hint:
Assume that the sun’s rays at Syene and Alexandria
are parallel lines.]

. In the only surviving Greek mathematical text

from before Euclid, Hippocrates (circa 440 B.C.)
investigated the areas of lunes, which are regions
bounded by two circles. Explain his result that the
shaded lune shown in Fig. 1.5 has the same area as
AABO. [Hint: Include the unshaded area between
A and B.]

10.

11.

12.

13.

BEHOLD!

Figure 1.6

Recall the Pythagorean theorem: In a right triangle,
the square on the hypotenuse has the same area as
the squares on the sides: that is, a? + b* =2

Give a proof of the Pythagorean theorem based on
Fig 1.6. The Indian mathematician Bhaskara (1114~
1185) devised such a proof but provided only this
diagram with the word “BEHOLD!” written

below it

In Fig 1.7 /ACB is a right angle and CD is
perpendicular to AB. Why are AABC, AACD, and
ACBD all similar? Show that cy = a? and cx = b?
and develop a proof of the Pythagorean theorem.

Study Euclid’s proof of the Pythagorean theorem
(proposition 1-47 in Heath [13, 349]) and compare it
with the proofs in Problems 10 and 11. Discuss each
proof’s assumptions and how convincing and how
easy it is to follow.

The Greeks proved that a cylinder has three times
the volume of a corresponding cone. Use each

of the following methods to verify this fact and
discuss their advantages, disadvantages, and assump-
tions.

a) (Empirical) Find or make a cylinder and a cone
with the same height and radius (Fig. 1.8). Use
the cone three times to fill the cylinder with
sand. How close does the volume of sand in the
cylinder come to exactly filling it?

b) (Calculus) Recall that fab w(f (x))2dx gives
the volume of revolution generated by rotating
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Figure 1.7
around the x-axis the curve y = f(x) fromx =a Find the volume of the stack of disks and simplify
to x = b (See Fig. 1.9). Use calculus to compare it to get the approximation formula
the volumes of a cone and a cylinder. 2 n
] ) . Thr 2
¢) (Stacked disks) You can approximate the volume Volume ~ o= Z .
of a cone with the volume of a stack of disks (Fig. i=1
1.10). If A is the height of the cone and » is the Assume (or better prove by induction) that
number of disks, the height of each disk is 2 /n. Sr_,i%=(2n3 + 3n? + n) /6. What happens
Find a formula for the radius and the volume of to this approximation as ri approaches infinity?

the ith disk from the top in terms of the radius.

)

)

——— V2 ——

C

Figure 1.8




