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Preface

I begin to understand that while logic is a most excellent guide
in governing our reason, it does not, as regards stimulation to
discovery, compare with the power of sharp distinction which
belongs to geometry. —Galileo Galilei

Geometry combines visual delights and powerful abstractions, concrete intuitions and
general theories, historical perspective and contemporary applications, and surprising
insights and satisfying certainty. In this textbook, I try to weave together these facets
of geometry. I also want to convey the multiple connections that different topics in
geometry have with each other and that geometry has with other areas of mathematics.
These connections link different chapters together without sacrificing the survey nature
of the whole text.

The enduring appeal and importance of geometry stem from its synthesis of intu-
ition and reasoning. Mathematical intuition is as hard for mathematics majors to develop
as is the art of proving theorems. Geometry is an ideal subject for developing both. How-
ever, geometry courses and texts for mathematics majors usually emphasize reasoning.
This book strives to build students’ intuition and reasoning through the text and the va-
riety of problems and projects. The dynamic geometry software now available provides
one valuable way for students to build their intuition and prepare them for proofs. Thus
problems dependent on technology join hands-on explorations, proofs, and other prob-
lems. I see this book as building on the momentum of the NCTM Standards for primary
and secondary education and on the calculus reform movement in its goal of helping
students internalize mathematical concepts and thinking.

e Proofs end with the symbol m. Examples end with the symbol ®. We abbreviate
“if and only if” with “iff.” In a definition, the word being defined is italicized.
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Prerequisites.
The major prerequisite for using this text is the ability to read proofs and other mathe-
matical content at the level of an undergraduate mathematics major. The book assumes
a familiarity with high school algebra and geometry, although a detailed memory of
geometry theorems isn’t expected. (Appendix A supplies many of them in Euclid’s lan-

guage and in sometimes more modern phrasing.) Calculus is needed for Section 2.4 and, -

as noted, occasionally in examples, problems, and projects. An understanding of vec-
tors is needed for Sections 2.3 and 2.5. Linear algebra is needed for Sections 4.3, 4.4
4.5,6.3, 6.4, 6.5, 6.6, and 7.4. We discuss groups in Chapters 4, 5, and 6, and fields ir’n
Section 7.4, but students aren’t expected to be familiar with them.

ToO THE STUDENT

Everyday speech equates intuitive with easy and obvious. However, recent psychology
research confirms what mathematicians have always understood: People build their own
intuitions through reflection on new experiences. My students often describe the process
as learning to think in a new geometry. I hope the text’s explanations are clear and
provide new insights. I also hope you find many nonroutine problems you can solve
after an extended effort; such challenges enrich your intuition.

Problems.
Learning mathematics centers on doing mathematics, so problems are the heart of any
mathematics textbook. I hope that you (and your teachers) will enjoy spending time
pondering and discussing the problems. Make lots of diagrams and, when relevant,
physical or computer models. The problems are varied and include some that encourage
hands-on experimentation and conjecturing, as well as more traditional proofs and
computations. Answers to selected problems appear in the back of the book.

Projects.
Essays, paper topics, and more extended and open-ended problems appear at the end of
each chapter as projects. Too often textbooks shift to a new topic just when students are
ready to make their own connections. These projects encourage extensions of the ideas
discussed in the text. Many of these projects benefit from group efforts.

Visualization.
This text has an unusually high number of figures because I believe that students benefit
greatly from visual thinking. In addition, you will be asked to draw your own designs,
to use a computer, or to build three-dimensional models. Visualization not only builds
your intuition about the topic at hand, it can also lead you to new insights.

History.
Geometry reveals the rich influences over the centuries between mathematics and other
fields. Students in geometry, even more than other areas of mathematics, benefit from
historical background, which I have included in the first section of each chapter and the
biographies. The biographies give a personal flavor to some of the work discussed in the
text. One common thread I noted in reading about these geometers was the importance
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of intuition and visual thinking. As a student, 1 sometimes questioned my mathematical
ability because I needed to visualize and to construct my own intuitive understanding
instead of grasping abstract ideas directly. Now I realize that great mathematicians also
built on intuition and visualization for their abstract proofs and theories. Perhaps this
understanding will help you as well.

Readings and Media.

Geometry is a field blessed with many wonderful and accessible expository writings and
a long tradition of visual materials. I hope that you find the list of readings and media
at the end of each chapter valuable while you are studying from this book and later as a
resource.

To THE TEACHER
Suggested Course Outlines.

This survey text supports various courses. If time permits, one option is to do the entire
book in sequence. Even an entire year devoted to this course would require that you
pick carefully among the problems and projects in order to cover all the chapters. One-
quarter courses could cover two chapters—for example, Chapters 1 and 3, Chapters 4
and 5, or shortened versions of the following semester course options.

e Course 1, teacher preparation: Chapters 1, 3, and 4, and, as needed, Sections 2.1
and 2.2. Sections 3.5 and 4.6 are optional. If time permits, topics from Chap-
ters 2, 5, and 7 may be included.

e Course 2, Euclidean geometry: Chapters 1, 2, 4 (except Section 4.6), and as
much of 5 as time permits.

e Course 3, transformational geometry: Chapters 4, 5, and 6, and, as needed,
Sections 1.1, 1.2, 1.5, 1.6, 2.1, 2.2, and 2.5.

e Course 4, axiomatic systems and models: Chapters 1 and 3, Sections 2.1, 6.1,
6.2,6.3,7.1,7.2, 7.4, and parts of Sections 2.3 and 6.5.

More than one class period should be devoted to most of the sections. In the first
period I usually discuss the main points of the section, model one or more of the
problems or relevant projects, and/or have the students do one of the group projects.
1 often use part of the next class (or classes) for group presentations of problems
or projects, which can spark discussion about different approaches. I hold class in
our computer lab several times during the semester. | encourage students to use their
graphing calculators for matrix computations in Chapters 4 and 6.

The projects serve several pedagogical purposes. Some of them are intended as
group explorations to introduce topics in class. Others are suitable for essay topics or
classroom discussion. Others are open-ended or extended problems. The most succinct
ones, of the form “Investigate . . . ,” are leads for papers. I have assigned papers in my
geometry class for more than 10 years. Students uniformly regard these papers as the
high point of the class.

The chapters are largely independent, although they are often interconnected. Chap-
ter 3 depends on the first four sections of Chapter 1. Section 4.6 relies on Section 3.1.
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Chapter 5 requires the first two sections of Chapter 4. Sections 6.3-6.6 depend on Chap-
ter 4, except Section 4.6. Sections 6.5 and 6.6 also rely on Section 3.1. Section 7.4
requires Chapters 4 and 6.

Instructor’s Resource Manual.

Because of the unusual variety of problems and projects, answers to the problems and
selected projects and suggestions for their use can be found in the Instructor’s Resource
Manual, available from Addison Wesley Longman. Instructor support for integrating
Geometer’s Sketchpad into the geometry course will be included.
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