HOMOMOPHISMS FOR EQUIDISTANCE RELATIONS
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Abstract. This paper presents necessary and sufficient conditions for the

exlstence of homomorphisms gop equidistance retatlons in terms of the closed
subsystems (the Fundamental Theorem of Homomorphisms ). Further Lt shows .
that every closed subsystem of o l-polnt homogeneous equldistance sgstem-Ls a
coset- of a unigue homomorphis® Affine spaces and other Lncldence geometries
can be seen as examples of equidistance systems.

s

The notion of a flat, as in Dembrowski (1968), provides a natural
definition of subgeometry generalizing lines and planes. This paper starts
from a different geometric perspective, equidistance, which is taken as
a4 primitive. Sibley (1977) proves that to every equi distance relation E
there corresponds a metric d so that aa'Ebb' iff d(a,a')= d(b,b'),
given a suitable cardinality restriction. See Sibley (1979) and ({1981)
as well for further properties of equidistance relations. See Gratzep
(1968: 80-82,98,224) for a discussion of notions of subsystems and

homomorphisms .

Definitions.
An equidistance relation E on a non-empty set A is a subset of
orﬁérpd 4-tuples of A, written abEcd, so that 1) abEba, 1ii) abEce

iff a=b, and iii) K is an egivalence relation on AxA, the orderegd
pairs of A,

Note that each such relation E corresponds to a partition of the
complete graph on A jinto classes of different distances. An E~system
(A,E) is an equidistance relation E on & non-empty set A. Although
we can form a subsysten by restricting E to any subset of A, this provides
No sense of closure, unlike the following definition. Given (A,E} and
BCA, B #¢; (B,E is a sub-E-system of (A,E) iff for all 'a, b, ¢c€B ang
A€ 4, if abEcd; then d€BR.

Given two E-systems (A,E) and (A',E'), a function h:p-—>a' jg a
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homomorphism from (A,E) into (A',E') iff for all a, b, ¢, €A,
abEcd; then h(a)h(b)E'h(c)h(d). If h is one-to-one, then it is an
-] .
embedding. If h is onto and both h and h are embeddings, then (A,E)

and (A',E') are isomorphic. If
on A, E is weaker fhan gt iff for all a, b, c, d€A, apEcd  implies

if

E and E' are equidistance relations.

abE'cd. Equivalently, EcE', when they are considered as subsets of Ad.
Clearly, for ECE' with E#£ &' on A, the identity is an embedding from
{A,E) ounto (A,E'), even though {A,E) and (A,E')} are not isomorphic.
This mildly irritating situation occurs guite generally for homomorphisms

on relational systems and requires-an appmpvmjg qualification in Thecrem 2,
below. For a homomorphism h from (A,E) into (A',E'}, and for a&h,
define H_ = {bEA: h{a) = h(b)} o be a coget of h. Just as in algebra,
without regularity conditions, the cosets can be haphazard. l-point homoge-
neous E-systems provide a particularly nice setting for homomorphisms.

A bijection s on A 1is en isometry of (A,E} iff for all a,bEA,

abEs{a)s(b). (A,E) is l-point homogeneous iff for atl a, bEA, there
is an isometry s so that s{a) = b. {A,E) is regular iff every point of
a has the same number of points at a given"distance" from it. A bijection

s on A is an automorphism or similiarity of (A,E} iff for all a, b,

c, dE A, if abEcd; then s{a)s{b)Es{c)s(d). Given (A,E), two subsets of
A, {bi: iEI} and {ci: iEI} , are congruent iff for all i, j€1,

. . 1€ } I .
bibgcicj Given (A,E), two subsets of A, {bi' i€ 1] and-fe.; i€ I} , are
isometric iff there is an isometry s of (A,E) so that for all i€TI,

s(bi) =C, . Note that congruent is weaker than isometric.

Properties ¢f Homomorphisms .

Prop. 1 Every coset of a homomorphism is a sub-E-system. Further, if

abEcd and H =H , then H = H..
a b c d

Proof. If “abEcd, then h(a)h(b)Eh(c)h(d). I1f hnla) = h(b), property 1ii)

of an eguidistance relation forces h(¢)=zh{d). Frcem a, b, c&H and
abEcd, the above gives. Thus every coset is a subnE—system.

Property 1 above provides necessary conditions for a homomorphism.
The construction below shows that these conditions are also sufficient,
which is the content of Theorem 2, the Fundamental Theorem of‘Homomorphisms.
Suppose (A,E) 1is an E-system with disjoint sub-E—systems'ﬁHa,E}: affA}
which partition A,E). The extra condition in Prop. 1 is that the distances

ingide any of the sub-E-systems do not appear between points of different
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sub~-E~systems. Mare precisely, a partition of (A,E) by sub-E-systems

7 {( sE): a€ {} is normal iff for all a,b, ¢, d€A, if abEcd and H = H
L E) ; then H, =H

b)

4
Given a normal partition, we construct the "factor system" as
ﬁ tollows. Let A/H = {Ha: a€A} and define E* on A/H by H H E*H H_
‘ ! . a c
3 : iff there are x'EIHx so that a'b'Ec'd'. E* is not necessarily an

equidistance relation. Let X/H be the transitive closure ¢f E*. Then it
is easy to see that E/H is an equidistance relation: i) for all a, b&A

abEba, so HaHbE/HHbHa. ii) By definition of E*, H H E*H. H. and so for

QQ,. 1 E/H as well. The condition of a normal partition guaranteez 2hat HaHbE*HCHC
implies Ha = Hb' Thus the same holds for &/H. iii) E* 1isg reflective

, | and symmetric, so E/H is. E/H is tansitive.

%é- é Hence (A/H,E/H) is an E-system. The cancnical mapping h{a) =

is obviously a homomorphism from (A,E}) onto (A/H,E/H). The rest of the
A : Fundamental Theorem states how these canonical homomorphisms describe all
i others. Suppose h': A—3>A' is a homomorphism from (A,E) inte (A',E')
E f E with the same sub-E-systems '%Ha’E): aEEA} as cosets. The mapping

Y k: A/H—>A' given by k(Ha) = h'(a) is clearly well defined ard an
embedding from (A/H,E/H) into (A',E'). In effect, E/H is the weakest
equidistance on A/H which can be the homomorphic imdge of (A,E)} using
these cosets. Any stronger relation on A/H can also be such an image and,
Ere up tc isbmorphism, those-are all images.

Theorem 2 (Fundamental Theorem of Homomorphisms). Let (A,E) be an
E-system with a normal partition of sub-E-systems A/H = {(Ha,E): aGfA}.
For E/H as defined above, h: A—>A/H given by ha) = H, is a
homomorphism from (A,E} onto (A/H,E/H). Further, if h': A—A' is a
homomerphissm from (A,E) onto (A',E') with cosets the elements of A/H,
then there is E" on A/H so that E/HCE" and (A/H, E") and (A',E')
are isomorphic.

The lsomorphism Theorems beiow follow readily upon noting that the

non-empty intersectior of sub-E-systems is again a sub-E-system.
Prop. 3 (First Isomorphism Theorem). Let (A,E) be an J- -system, (B,E)

a sub-E-system and (H LE): exEA} a noraml partition of (A,E). Then
{ BF]H »E): aé’A}‘ ia a normal partition of (B,E) and (B/BMH,E/BMH)
is isomorpnic to the sub-E-system ({ﬁa: a({B},E/H) of (A/H,E/H).
Prop. 4 (Second Isomorphic Theorem). Let (A,E)} be an E-system and
{(H JE) ¢ aEA} and { K ,E): a€ A} be normal partitions of (A,E) so that

for all a€ A, HaC;Ka- ?hen (A/K,E/K) is isomorphic tn (A/H/K/H, E/H/K),
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4
where E/H/K is the equidistance relation on A/H/K/H determined by the
Fundamental Theorem of Homomorphism from (A/H,E/H).

The special case of l-point homogeneous spaces deserves seperate
mention. Note the similiarity of Prop. 6 below with La Grange's THeorem
and the fact that for commutative groups, every subgrouﬁ is normal.

Prop. 5 If (A,E) is 1l-point homogeneocus and h: A—3A' is a
homomorphism from (A,E) onto {A',E'), then i} all cosets are isometric
{and so congruent) sub-F-systems and ii, (AY,E') is also 1~point.
homogeneous .

Proof. Let a and b be in A and s an isometry with s{a)=b
Then s(H ) is isometric and so congrueﬁt to H and bEis(H ). To show
sfH ) = Hb consider the following. For all b'E: (H ), there is
a' = s (b')éli So that aa'Ebb'. Hence by Prop. 1, I:» €H , that is,
s(Ha)(:Hb Similiarly, we have s (H,)C:H . These force s(Ha) = H
which is part i). for part ii), note f;rst that if E"CE' on A' ani s
is an isometry for (A',E"), then s' is an isometry for (A',E') also.
Hence, by the Fundamental Theorem of Homomorphisms, it suffices to show that
(A/H,E/H) is l-point homc ,eneocus. Let H_» HbE:A/H. For s an isometry of
{A,E) with s(a) = b, let S(Hc) = Hs(c) on A/H. Clearly, S 1is an isomerty
and S(H) =H g

Prop. 6 Every sub«E-system of a l-point homogenecus E-~system ig the
coset of a unique (canonical) homomorphism. .Jence the order of a sub-~E-
system divides the gprder of the l-point homogeneous E—system.

Proof. Let (B,E) be any sub-E-system of (A,E) and let s be any
isometry of (A,E). Then,by the same reasoning as for part i) of Prop. 5,
(s(B),E) is also a sub-E-system of (A,E'. Further, these sub-E-systems
are congruent. Hence they are either disjoint or idertical. Further,
{IS(Q,E): s is an isometry of (A,E)} is & normal partition of (A,E).
Both the uniqueness of the Homowmorphism and "LaGrange's Theorem' on the
order of sub-E-systems now follow immedicately'

Since l-point homogeneity was used in Prop. 6 only to insure
congruent cosets, we immediately have this Corollary.

Cor. 7 If an E-system can be partﬁtioned in congruent sub-E-system,
then that partition is normal. )

Prop. 5, but not 6,generalizes some for regular E-systems.

Prop. 8 If (A,E) is regular and h: A—A' is a homomorphism from
(A,E} onto (A',E'), then 1i) all cosets are equinumerous (but not necesg—

arily congruent). Hence the order of the sub-E-systems of a normal partition
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divides the order of the E-system. ii) if each coset is finite, then
(A',E') is also rogular.

Proof. Let Ha and Hb be any two cosets of (A,E) and a'éﬁHa- By
Prop. 1, {a": aa'Eaa" (:Ha and by regualrity, {b": aa'Ebb"} is
equinumerous with it. Further, by Prop. 1, {5": aa'Ebbf}(:Hb. We can do the

same for each a*é;Ha to obtain an injection of Ha into H, . By symmetry,

we get part i). Part 1ii) depends on the fact that division 0? a cardinal
number by another is well defined provided the second one is finite (and
non-zero). In effect, the homomorphism collapses the equivalence c¢lasses

of "distances'" as well as the points. But the finiteness of the cosets
insures that the new equivalent classes of "distances" from different cosets
will still be equinumerous.

Examples. The examples below illustrate the propositions above and
their limitations. See Sibley ES] and [6] for a description of various
l-point homogeneous E-systems.

Example 1. If (G,*) is a group, define /a/ = {g,a-l} and abEcd
iff /a*b*l/ = /c*d_l/_ This generalises absolute values and distances from
the reals. (G,E) is l-point homogeneous with isometries sa(x) = x*a, for
a¢ G. SBibley [ﬁ] generalizes this. The sub-E-systems of (G,E) consist
exdctly of the right cosets of the subgroups of (G,*) because a subset is a
subgroup iff it is closed under products of the form a*b™ > which
correspcnds the definition of E. Thus Prop. 6 provides the mildly
suprising recult that even subgroups which are nct normal determine normal
partitions of the corresponding sub-E-systems.

Example 2 On a set with n elements, let E be the equidistance
relation with only one non-zero distances,. Then there are no non-trival sub-
F-systems. This E-system is clearly l-point homogeneocus since any hijection
is an isometry.

Example 3 Let (B,E') be the six point
regular E-system determined by Diagram 1.
There are five non-zero distances represented
by straight, dashed, dotted,wavy, and
double lines. Any pair of points forms a
sub~E~system. Three such congruenﬁ sub~E~
systems, say, {1,2}, {3,4}. {5,6}, form
a normal partition iliustrating Cor. 7.
However, the partition {1,2}. {?,5}, {4,6},

is not normal even though these syb-E-
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systems are equinumerous. Thus the converse

of Prop. 8 i) need not hold.

Example 4. Let (C,E") be the seven
point regular E-system determined by
determined by Diagram 2. There are three
non-zero distances represented by
straight, dashed, and wavy lines. The
subset {?, b, b’} forms a sub-E-system
but is not part of a normal partition.

Thus LaGrange's Theorem on the order of

sub-E-systems need not hold for regular
E-~systems, although Prop. 8 i) shows it

does hold for '"normal' sub-E-systems.

(C,E") is also useful in showing that the
cosets of a regular geometry need not Diagram 2

be congruent.
Let E be the equidistance reiation described in example 1 of the seven

element group, C7. Note that E also has 3 non-zero distances. Define
E*¥ on CUC7 as follows. E* has four non-Zzero distances so that (C,E*)
is a sub-E~system isomorphic to (C,E") and (C7,E*) is a sub-E-system
isomorphic to (07,E) with the same three distances of E* used in each.
The fourth distance of E* is for pairs of points where one is from C and
the other from C7. By constructiorn, (C,E*} and (C7,E*) form a normal
partition although they are not congruent.

Example 5. To show that the finiteness condition of Prop. 8 ii) is
needed, defined E on {1, 2, 3, 4} X Z
with three non-zero distances as :

iz}xz {3 Kb

follows. (See Diagram 3). "Wavy"

distance for (a,i) (b,j) iff J/a-b/ =1.
"Dashed" distance for (a,i) (b,j) 1iff
/a-b/2 2. "Circular" distance (in

diagram 3) for (a,i) (a,j) iff 1 #]-
Then the sets {1] xZ, {2]xz, {3fxz,and i:,}xz
{4} xZ are congruent sub-E-systems. Diagram 3

However, the equidistance relation on

the four cosets, {Hl’ H2, HB’ H4}

given by the Funuamental Theorem of Homorphisms is not ragular because H

has one "wavy" edge and H2 has two "wavy' edges.



Lines and Equidistance.

An unusual interpretation of equidistance encompasses many geometries
based on lines {incidence geometries). I will use "geometry" to refer to
a set with designated subsets called lines, while retaining "E-systems"
for the same set with the corresponding equidistance relation. The most
important such geometries satisfythe properties that there is a unique
line incident with two distinct points and each line is incident with at
least two points. For a non-empty set G with a family of lines ol
satisfying these properties, call (G/) unilinear. Let ab be the line
incidenf with a and b, two distinct points. Define an equidistance
relation E on G by abEcd iff either (a=b and ¢ =d ) or

(a#b, c#£d, and b = ed ). A bijection of G is an affine transforma-

fioh iff the image of a line is a line. The condition that every line has
at least twp points is needed since the equidistance relation could not
distinguish between a singleton that was a line and one that wasn't.
Clearly, the equidistance relation E contains exactly the same informa
tionqs X does. Thus Prop. 9 below is immediate. Prop. 10

characterizes those equidistance relations which correspond to unilinear
incidence geometries.

Prop. 9 If (G,£) is unilinear and E is the corresponding equi-
distance relation, then the affine transformations of (GXL£) are exactly
the automorphisms of (G,E).

EEER' 10 If E is the equidistance relation of a unilinear geometry
on a non-empty set G, then for all distinct a, b, c€G,

' (*) if abEbc , then abEac.
Further, if for all distinct a, b, ¢c€G, (*) holds for an eguidistance
relation E', then E' determine$§a set of lines by ab = {c : abE'ac}U{a}
for a #b so that (G&) is unilinear.

Proof. Let (G,L)} be unilinear and E the equidistance relation
derived from & . Then for distinct elements a, b, c€G, abEbc iff
there is a unique LEL so that a, b, c€L. This implies {(*). Note that
each line forms a sub-E-system with exactly one non-zero distance. For
the second part, let E' be an equidistance relation on G satisfying (*)
for distinct a, b, c€G. For a # b, define ab = {c : abE'ac}L){a}.

Let J’= {;E T a # B}. Clearly, each line incr has at least two elements
and every two elements have a line incident with them. Note ‘that ab is

the sub-E'-system generated by a and b and that this sub-E’-system has




8

exactly one non-zefo distance by (*). Hence for ¢ #d and c, dE-gg, we
have cd = ab. Thus there is a unique line incident with twa distinct
point, proving unilinearity'

I1f we consider the equivalence classes of E, then the property (*)
is very 1ik§%a transitivity condition., That is, if ab and be are in a
class, then ac is in the same class. Further, the definition of an equi-
distance relation provides the corresponding "symmetric-like" and "reflexive
like" conditions, That is, if ab 4is im a class, then ba is in the same
class and all aa are in the same class. Note that the second part of Prop.
10 is not a converse of the first part. From E' satisfying (*), we
obtain wahich in turn gives the eciiidistance relation E of the first
part. One can readily see that ECE'. Further, there is a certain
"paralleli$m” among the lines of & which, as sub-E'~systems, have the same
distance. This becomes most apparent with affine spaces. Let (Gu£) be an
affine space with "//" meanirg "parallel". Define E' on & by abE'cd
iff either (a=b andc =d) or (a#b, c #d, and ab//cd ). An affine
transformation s on (GX) is a homothety iff for all LEJ, s(L)//L.
See Blumenthal (1980, pages 73-84) for an explanation of the first Desargues
property for affine planes, its necessity and its uses for the proof of the
following theorem.

Prop. 11 If (G,f) is an affine plane with the first Desargues
property and E and_E' are as defined above, then 1i) the homotheties of
(G, &) are the isometries .y (G,E'), 1ii}) (G,E') is l—péint homogeneous
and iii) (G,ET) has the s.ye automorphisms as (G,E).

Proof. Part i) is immediate from the definitions of the terms and
E'. ii) Blumenthal (1980) constructs the usual addition on equivalence
classes of vectors using.the first Desargues property . This addition uses
the familiar parallelogram law and forms a commutative group. Each equivale-
nce class of vectors cocrresponds to a translation. That is, for all a,b,
¢EG, there is a unique d€ G such that :g = ;:-:] and so we can define
ta,b(C) = df By the“parallelogram law these translations are homotheties.
Thus \(G,Eﬁi is 1-point homogeneous. Part iii) is a consequence of the
fact that the relation of parallelism is determined by the set of lines in a

affine planeg
Prop. 11 can be extended to some affine spaces, including those over

fields. The existence of skew lines in higher dimensions iuplies that

additional structure besides the first Desargues property is needed. The
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cosets of homomorphisms of such affine spaces are the "flats" of the
geometry, that is, the right (and left) cosets of the subspaces. The
translations of such affine spaces form commutative groups which can be
readily identified with the points of the spaces. (WOlff [7] shows thagrnup.
a uniquely determined parallelogram structure is equivalent to a commutativg/
Let E" be the equidistance relation defined cn the points of the affine
space which is derived from the group of translations as in example 1.

Then E"CE' because abE"cd implies EE//EE by the parallelogram pro-
perty (or a =b and ¢ = d) which implies abE'cd.

The equidistance relation E' of Example 3 above imitates the
relation E' for affine spaces in the use of a sort of parallelism. Tris
suggests the following generalization in which // 1s an undefined
relation on a{'. (G,It//) is //-unilinear iff i) (ij) is unilinear,

ii} // is an equivalence relation, and iii) for all a€G¢ and LEJ?,

there is a unique MEI: a€EM and L//M. For (G,f’/,) //=unilinear,

define E' on G by abE'cd iff’ either (a =b and ¢ = 4) o~

(a #b, ¢ #d, and ab//cd). Note L//M and LZM imply LAM = @.
Prop. 12 If (G,X,//} is //-unilinear and E' is defined as

above, then any set of parallel lines forms a normal partition of (G,E').

Proof. By the definition of E', each line 's clearly a sub-E~system.
By properties 1ii) and iii) of //-unilinear, we have a partition. Again,
by definition of E', the partition is normal g

Urlike affine spaces, //-unilinear geometries can have different
numbers of points on lines. The easiasst such example comes from
eliminating one point from an affiné space ( in which every line has at
least three points). This of course entails that there can be non-parallel
lines with no intersection, even in the same 'plane".

Spherical geometries are not unilinear. However, every line which
goes through a point goes through its ant’: ode. Thus the usual identifica-
Vizw of opposite points gives single elliptic geometries as homomorphfc
images, which are unilinear. All unilinear geometries ran be generalizedq
in a similiar manner, yielding generalizations of Prop. 9, 10 and 12.

Many geometries already have a metric defined on them. In particular,
Euclidean and hyperbolic geometries have both the incidence structure and
the metric. To simplify, we will consider only for Euclidean spaces how the
unusual equidistance relation defined from the lires relates with the

usuq' equidistance relation defined from the metric. Let Em be the
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equidistance relation defined from the Euclidean metric on a space with at
least two dimensions. (One dimension is trivial.) Let E, be the equi-
distance relation defined from the lines. Em is strong encugh to determine
the metric. (SibleYE{] proves this in a more general context.) It is well
known that the metric determines the lines, Thus every similarity (auto-

morphism of Em) must be a linear transformation (automorphism of El).

For a Euclidean space, consider also the equidistance relation Eg
derived from the group of translations of the space and Ea derived from the
affine structure. (See Example 1 and the definition before Prop. 11 for
their definitions). Note abEgcd iff abEmcd and abEacd. That is,

Em considers the lengihs, Ea considers the directions and E  considers
both, as vectols do. For i €%a, p, 1, ﬁz, write Ii for the

.
isometries of Ei' Then I  contains only the identity, Ia contains the

homotheties, Im Contain; the usual isometries and Ig = Im{an
contains the translations and central symmetries. Note that there are
discontinuous linear transformations in the groups of automorphisms of
Eaﬂ Eéﬁ and Ei. The usual affine transformations form the subgroup of
continuous antomorphisms of these.

The possible homomorphic images of a Euclidean space using these
different equidistance relations reveals another aspect of their interactionﬁé
The homomorphic images of (Rk,Eg) are simply the E-systems corresponding -
to groups which can be homomorphic images of (Rk,+). At the other extreme,
a homomorphism from (Rk,Em) for K22 is either an embedding or maps
all of Rk to & single point. In between are the other equidistance relations
El and Ea. They act like vector
of (R ’El) and _(Rk,Ea) are lower dimensional Euclidean spaces of the

spaces in that the homomorphic images

same form. This expresses in another way that the incidence structure of

Euclidean space corresponds very closely to the algebraic structure while

the usual metric ties everything together so to speak, into the

analytic structure based on neighbourhoods.
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