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EQUIDISTANCE ‘RELATIONS:
A NEW BRIDGE BETWEEN
GEOMETRIC AND ALGEBRAIC STRUCTURES

Thomas Q. Sibley

ABSTRACT

This paper investigates the transformations of cer-
tuf1 qeometric structures into algebraic ones and con-
versely, The algebraic notion of absolute value corres-
ponds with the geometric one of equidistance. Further,
fatin squares with absclute values correspond to
regular equidistance relations, '‘near groups™ yleld
t point homogeneous equidistance relations, and
“near commutative groups’ yield 2-point homogen-
eous equidistance relations.

INTRODUCTION

The synthesis of geometry and algebra has
for centuries engendered rich mathematics.
This paper presents a new link between these
fields by relating absolute values with equi-
distance relations. We first consider the con-
nection between groups and certain geometries
reminiscent of the Cayley graph of a group.
This situation generalizes to a much wider class
of algebraic and geometric structures, as
proven below.

Equidistance relations first appeared in
Arthur Cayley's important paper, ''A Sixth
Memoir on Quantics’ [1], in 1859, where he
used them to heuristically derive the Euclidean
and spherical metrics within the projective
plane. Felix Klein's Erlanger Programme (3]
of 1872 provides another main link in this
paper, namely groups of isometries. Cayley
aiso contributed the notions of the graph of a
group and the Cayley numbers, both of which
enter into this discussion. See Kline (4, pages
907-923] for a good discussien of both Cayley's
and Klein’s contributions in these areas. See
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Sibléy [6] and [7] for further discussion of
equidistance relations.

Definitions. Given a metric space (G, d),
we can define an equidistance relation E on
G by aa’Ebb’ iff d{a, a'}=d{b, b’). How-
ever, the four properties in the following defini-
tion characterize equidistance relations without
reference to a metric. See Sibley (6] for a proof
of this. Cn a set G, E is an equidistance
relation iff i) E isan equivalance relation
on ordered pairs of G, ii} abEba, iii
abEcc iff a=b, and iv) there are at
most 2™ equivalance classes (mod E),
where 2% s the cardinality of the real
numbers.

On a metric space (G, d), a bijection f
isanisometry iff forall a, beG, dia, b}=
dif(a}, fib)). Again, the following equilavent
definition avoids metrics entirely. A bijection
f on G is an isometry of E iff for all
a, beG, abEf{ajfib). Isometries clearly relate
quite closely to equidistance relations but they
do not in general suffice to determine the me-
tric. See Sibley [6] for conditions under which
the isometries determine the metric. Hence-
forth, a geometry (G, E) is a non-empty set
G together with an equidistance relation E
on G. IE} is the group of isometries of
(G, E). (G, E) is !l-point homogeneous iff
for all a, b€G, thereis f in {E): flal=
b. (G, E) is 2-point hamogeneous iff for
all a,a. b, beqG, thereis fEUE): flal=b
and f(@)=b", provided aa'Ebb’. Similariy,
{G, EY is n-point homogeneous iff for all
a, ., . Ay . by, bh.E G; if for ail
i, 3 a; Eb;_b‘j; then there is fEI(E). fla;) =
be.
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Wae can consider equidistance relations as
colored graphs on G by defining two edges
aa’ and bb’ to have the same color iff




aa’Ebb’. For each color we thus obtain a
graph on G. These various colored graphs
form a partition of the complete graph on G.
Conversely, any partition of the complete graph
on G will define an equidistance relation in
the obvious way. (G, E} is regufar iff
each of the colored graphs that E deter-
mines on G is regular. That is, every vertex
of G has the same number of incident edges
of a given color.

m.:hl—\lotg that for every ggomefry_ (G, E):
) point homogeneity implies §-point homo
geneity which implies regularity.

THE GEOMETRY OF A GROUP

Example. Consider the group (R, +)
of the real numbers under addition. We readi-
ly define the distance between two points a
and b by /a—b/. Then aa'Ebb’ iff
la—a'/=/b-Db'/ defines an equidistance re-
fation.

The situation above generalizes readily
for any group (G, *). Define /a/=(a,a "}
and abEcd iff /a*b' /=/c*d'/. Recall
that the Cayley graph of a group is a directed
colored graph on the elements of the group
where the edges correspond to multiplication

by the elements. Group presentations use only )

the edges corresponding to the generators of
the group. However, if we include all the erdges
and equate those corresponding to inverses,

we obtain the equidistance relation E de-

fined above. See Grossman and Magnus (2]
for a discussion of graphs of groups.

Theorern 1.a) If (G, *) isa group, then
for the above defined relation . E, (G, E} is
1-point homogeneous, provided G has at
most 2% elements. b} Further, if * iscom-

mutative, then G, E) is 2-point homo-
gengous. .

Proof. a) Clearly, E is an equivalence
relation since it is defined using =. abEba

follows from the group identity a*b ' =
(b*a"')"'. For the identity, e, /e/=(e).

Thus abEcc iff /a*h' /=/c*¢ '/ =/e/
iff a=b. The order of G guarantees that
there are at most 2™ equivalence classes
imod E). Hence E is an equidistance re-
lation. Define translations t;: G-+G by 1.x}=
x*a for a€G. These translations are

clearly isometries and t, ., takes a
to b. Thus (G. E) is 1-point homo-
geneous,

.b} Suppose * 15 commutative and that
ahEcd. Hence gither a*t’' =c¢*d™' or

a*b:'=ic*d "y '=d*c’". In the first case, the
isometry t, -1, takes a to ¢ and, after
some simple calculations, takes b to d. In
the other case we need the central symmetry
s: G»G defined by six)=x"'. Again, com-
mutativity makes it easy to show that s
is an isometry, Then the isometry
takes a to ¢ and b to d.
{G. E) is 2-point homogeneous. Q.E.D.

Note that the set of translations (t,:a€G)
i~ a subgroup of HE} which is skew-isomor-

Hence

phicto {G, "1 14y =1,° t,.

Wolff {8] shows that a geometry {G. E}
has ‘‘parallelograms’’ iff there is an appro-
priate operation * on G so that (G, *)

is a commutative group. Given a, b, c€G,
he defines the fourth point d of the paralle!-
ogram by d=a%c*h ' which readily gives
both abFEcd and acEbd. These are the
natural conditions for a parallelogram. While
such 2 point~ d is definable in any group,
gither the four points fail to satisfy these con-
ditions or eise the choice of d is not unique
when * isnot commutative.

The connection between the group (G, *)
and the translations of {G, E) suggests the
following false conjecture: All 'such 1-point

_homogeneous spaces are the geometries of
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groups and all ssuch 2-point homogeneous
spaces are the geometries of commutative
groups. The example below dispels such a
simple characterization. However, the "‘near-
ness'” of the Cayley numbers to qualifying as
a group motivates the direction pursued in
the next section.

Example. Let (C.°) be the 16 unit
elements of the Cayley numbers together with
the multiplication of that 8-dimensional algebra
over the reals. See Kline {4, page 792] for a
discussion of the Cayley numbers. it is well
known that this muitiplication is neither dsso-
ciative nor commutative. However, the equi-
distance relation determined from this multi-
plication using the method above for groups is
2-point homogeneous. A tedious’ search con-
firms that none of the

lco Sa[a-]'

14 groups of order .
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16 determine an isomorphic geometry.

While (a® b)® ¢ does not always equal
a® (b®cl, we do have /{a®.b}® ¢/=
Ja® (b° c)/. Similarly, /a® b/=/b® a/.

These two equations suggest the notions of
near groups and near commutative groups
defined below.

GENERALIZATION OF THE GEOMETRY OF
A GRGOUP

The definitions of an c-geometry (a geo-

metry with an operation) and of an a-v algebra
(an absolute value algebra) characterize those
properties needed to generalize the construc-
tion above.
Definition.
o-geometry iff

A geometry (G, E) is an
i} there is e €G such that
for all a, b€G, there is c€G with
ahEec and i) forall a€G, {(b:aeEbel=
fa/ has at most two elernents.

Condition i} guarantees that all dis-
tances can be represented as distances from
the ‘‘origin’ and thus allows a natural use
of absolute values for distances. Condition
i) provides a means to define inverses and
absolute wvalues, For a€@G, if /a/={al
define a '=a. Otherwise, there is a second
elementin /a/ which we definetobe a”’
In preparation for the definition of the opera-

tion * on G, we first consider a '‘pre-
operation’”” *. This is a mapping from
GxG inte /G/=(/a/:a€QG) Define
a*'b=/c/ iff ab 'Ece or equivalently
a*'(b"'}=/d/ iff abEde. This clearly
imitates the definition of absolute value and
equidistance in groups. Further, a“'e=
/a/ =e*'a, a"')'=a, a*’a’=/e/=a"'""a,
and a*'b '=b*a ' because abEba. This

last property corresponds to the group
property {a*b '} '=b*a”'. We can con-
vert * to an operation * on G sim-
ply by replacing each occurance of /a/ with
either a or a'. However, judicious
choices will ensure that e is an identity.
Finally, note that inverses are unique since
fe/={e).

Definition. A set G together with a
binary operation * is an a-v algebra iff
il G has an identity e:e*a=a=a%e, ii)
each element a€G has a unigue inverse
a!' in Ga*a'=e=a'*a and for

/xi=Cx, x~'}, i) for all a, bEG, /a*b /=
/b*a =/,

Theorem 2. If (G, E} is an o-geome-
try, then the pre-operation *' can be con-
verted to an operation * on G so that
{G,*) is an a~v algebra. Conversely, given
an a—v algebra, by defining abEcd iff
Ja*b~ '/ =/c*d "'/, (G, E) is an o-geometry,
provided that G has at most 2% ale-
ments.

Proof. The remarks before the defini-
tion of an a—v algebra suffice to show that
** can be converted into an appropriate
operation * on G. For the converse,
note first that E is an equivalence relation
because it is defined from equality. Property
iii} of an a—v algebra entails abE&ba. Simi-
larly, the unigueness of inverses corresponds
to the property abEcc iff a=b. The order
of G ensures that there are at most 2
equivalence classes (mod E}. Hence E is
an equndsstance relation. Gwen a, bEG,
let c={a*h”") ' Then a*b” =e"c ! and
so abEec. This shows property iy of an
o-geometry. Finally, the uniqueness of inverses
ensures that (b: eEbe)=/a/ has at most
wwoelements, a and a'. Q.E.D.

Theorem 3 below extends the above
theorem to regular o-geometries and a-v
algebras which are latin squares. Recall that
a latin square is a set with an operation so
that both cancellation laws and both solvability
laws hold. Equivalently, every element appears
exactly once in each row and column of the
multiplication table of that operation.

Theorem 3. If (G, E} is a regular
o-geometry, then the pre-operation *° ¢an
be converted to an operation * on G so

that (G, *) is a latin square as well as an
a-v algebra. Conversely, if (G, *) is an
a—v algebra and a latin square, then (G, E)

is a regular o-geometry.

Proof. Given (G, E} a regular o-geo-
metry, /a/ appears exactly as many times
in each row and column of the table of *’ as
/a/ has elements. The procedure outlined
below ensures that * is a latin square.
Then we show that e is still an identity
under this procedure, the only questionable
property to show for an a —v algebra. If /a/=
{a}, then there is no choice for the replace-
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ment of /a/ in the * table with a in
the * table. Further, a will appear exactly
once in each row and column. Now suppose
that a#a '. Thus /a/ appears twice in
each row and column. Start at the entry e*'a=
/fa/ and replace /a/ with a in the *
table. Now move horizontally to the next occur-
rance of /a/ in the *' table at e*a”.
To make (G, *) a latin square, we must
take . e*a '=a ', which also makes e a
left identity. Now move vertically to the next
occurrance of /fa/ and replace it with a.
Continue afternating horizontal and vertical
movements and the placing of a and a '
unttil you cycle back to the space for e*‘a.

TABLE {1) THE PLACING OF

unique such cycle by the conditions of regu-

larity and of ii) of an o-geometry. Now
eat a,a, , implies that a *'a,, '=/a/=
a;*'a,_,n.

Table (1) summarizes these equalities pic-
torialty which suggests the following argument.
Note that the vertical movements change the
row by two in this table. Hence if there are an
even number of elements in the cycle {n s
even), then this process never arrives at the
row n-1, an odd number. In this case, we
are free to pick the value of a ™e tobe a~'
and so complete the table to obtain e as
an identity. In the other case, the number n
of elements in the cycle is odd. Thus the bottom

/a/ N THE TABLE OF *

y e a=a, 'a_ ' a,” a,' a,”' a,' =a,,
e=a, Ja/ > /a/ row 0
a=a, fa/ /a/ row 1
a, /a) &————/a/ row 2
a, fa/ J/ faf row 3
la/&———/a/ row 4
a_‘zan_, /a/ /a/ row n—1

Since this last movement must be vertical, we
again put a in this slot. If in this process
we have not encountered the position a%e
and so a~'"e), we are free to start again
putting a®e=a. In this case, we can fill
outthe whole tablefor * andhave e bea
right identity as well. The other possibility
is a bit more involved. The cycling process
described above corresponds to a cycle of
equidistances in {G, E). Let e=a_, a=
8, 8, ...,a,_,=a"" be the cycle of points
in G so that eaEa,a, ,. There is a
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row n-1 is even. Hence we will arrive at it
in the place a,_,"'a,_,-' which will there-
fore be assigned the value a in the table for
*. From there we come to a '"‘e which
will become a '*e=a"'. This in turn im-
plies that a*e must be a. Thus e is
indeed an identity. The other properties of an
a —v algebra are easily shown to hold.

For the converse, let (G,*) be an a—v
algebra and a latin square. We need to show
thatforall a, b, c€G, thesets {(d:abEad)
and (f:abEcf} have the same number of




elements. That is, for any given distance ab
and any two points a and ¢ , the num-
ber of points d at that distance from a
equals the number of points f at that dis-
tance from c¢. If /a*b '/ has one ele-
ment, then both of these sets have one efement

because (G, ¥} is a latin square. Similarly,
if ‘a*b”'/ has two elements, so do these
sets. Hence (G, E) is a reguiar o-geotmetry.
-QE.D. '

Note that different choices of the origin
e in {G, E) can result in operations which
are not ‘nearly isomorphic’”’ {G, *) and

(G, *') are nearly isomorphic iff there is
a bijection f:G - G* such that /fla™b)/ =
/fla)*'fib) . The example below gives a
regular 7 point o-geometry and two quite

different operations which have this same
geometry from the construction in Theorem 2.

Example. lLet (G, E) be the o-geome-
try given in the pictorial for in Figure (1)

HGURE (1)

There are three ' non-zero distances which are
represented by solid lines, dashed lines, and
wavy lines. To simplify the comprehension of
the two multiplication tables, the points are
labelled in two ways. The smal! letters refer
to Table (2] in which a is the identity. The
capital letters refer to Table (3) in which B is
the identity. A minus sign indicates the inverse
of an element, except for the identity. The in-

verses of the underlined elements could have
been chosen instead of those values chosen.
This however is irrelevant to the fact that the
operations * and *' are not nearly iso-
morphic. To see this, note that /x*x/=/x/
for any x in the first algebra, while D*'D=
- C inthe second algebra.

TABLE (2) OPERATION * WITH a A3 THE IDENTITY

» a b -b ¢ -c d -d
a a b -b ¢ ~-c d -d
b b -b a d -d ¢ -g¢
~u -b a b-d d-¢ ¢
¢c{ ¢ d-d-c a b -b
¢ | -c -a 4 a c-b b
d ¢ ¢ b ~b-d a
~d } -d -¢ ¢-b b a d

TABLE {3) OPERATION * WITH B AS THE IDENTITY

= B A-~-A C -C D -D
B B A-A C -C D -D
Al A-A B-D D C-C
-A -A B A -C C -D D
c C-C-D D B A-A
-c | -c € D B -D-A A
bl op-b ¢ A-A-C B
ol -0 bp-c-a A B¢
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Next we turn te 1-point and 2-point homo-
geneocus o-geometries.

Definition. (G, *) is a near group iff
i} {G,*) isana-valgebra and a latin square,
ii) for all a, b, c€G, {a*b)"'=b"**a"'
and * isnearly associative: a rearrangement

of paranetheses does not change the absolute
value of a product.

Definition. A near group (G.,*) is a
near commutative group iff * is nearly
commutative; for all a, be G, /a*b/=/b"a/.

Theorsm 4. a) if {G, *) is a near
group with at most 2% glements, then
{G, E) is a 1-point homogeneous o-geometry.
b} Further, if (G, *) is a near commutative

group, then (G, E) is a 2-point homogen-

e0us 0-geometry.

Proof. a)} By Thecrem 3, we need only
find an isometry taking any point a to any
other point b. As with groups, define the
translation t. by t.(x)=x%c. Both the
property of inverses and near associativity are
used to show that t. is an isometry as
follows. /x*y '/ =/(x*c*c "Wy /=
e e "ty Y = Jixtellytey' /=
. (x)*t lyy Y. Because {G,*) is a latin square,
for all a, b€ G, there is la unique) c€G
sothate a*c=b andso t;(al=b.

b} Given abEcd, we need to find an
isometry which takes a to ¢ and b to d.

As with commutative groups, the central sym-
metry six)=x"' isanisometry: /x*y /=
Iy o= Ix7TMyo= Iy Y s
/six)*s{y)-' /. Consider the two isometries
t.® t,-, anrd t.°s°t,-1 . Forboth the
image of a is c. If /a*b™'/=/c*d"'/
has one element, then they both take b to

d because that is the only possibility. If

/a*b™'/=/c*d”"/ has two elements, then
these isometries take b to different images,
one of which is d. Hence (G, E) is 2-
peoint homogenecus. O.E.D.

Remarks. 1) 1f (G, E) is a 1-point ho-
phogeneous o-geometry, then all the a-v
algebras derived from E are nearly isomor-
phic regardless of the choice of the origin. This
is because there is an isometry carrying any
choice of the origin to any other and this iso-
metry is the near isomorphism.

2} Part a) of Theorem 4 does not have a
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converse as the example below shows. The
method used to derive this counter-example:
does not work in the 2-point homogeneous:
case. Thus, the existence or non-existence of.
a converse of partb} of Theorem 4 remains an
open question. !

Example. Let (G, E) be the 8 point'
geometry ' given in pictorisl form in figures -

(2) and (3} below. There are five non-zero dis- ;

FIGURE (2) P'

FIGURE (3)
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tances represented by solid lines, dashed links between geometry and algebra will ap-
lines, wavy lines, double solid lines, and double pear as equidistance relations are better
dashed lines. To simplify the comprehension of  studied.

this geometry, these lines are split between the

two figures, except for the solid lines which TABLE {4) MULTIPLICATION TABLE

are in hpth; Table (4} is an associated muitlpli-

cation tabile. The identity is e. The elements «| & a b ¢ d f -b -a
c, q, and f are their own inverses, while :
a and -—a areinversesand b and ~b el e a b ¢ d § —b-na

are inverses. Note that {a*a}*a=b*a=f but
a*(a*a)=a*b=c. Hence * is not nearly
associative. Similarly, * is not nearly com-
mutative  because a*b=c while b*a=f. f
No other operation related to E can give a near
group either. (G,E) is however 1-point homao-
geneous since it was constructed by modifying
the geometry derived from the dihedral group
of the square,

Equidistance relations provided the key
motivation in the generalization from groups to
near groups to a-v algebras and the related -b|-b -a e f h a d ¢
o-geometries. The elementary nature of this
material indicates that further and deeper -ai-a e a d ¢ -b f b

BIBLIOGRAPHY

1. Cayley, Arthur, *'A Sixthr Memoir on Quantics’", 1859, Found in The Collected Papers of Arthur Cayley,
vol.2, pages 561-806.

2. Grossman, lsrael, and Magnus, Wilhelm, Groups and their Graphs, vol. 14 of the New Mathematical
Library, Random House, New York, 1364.

3. Klein, Felix, "'Vergleichende Betracht ungen iiber neuere geomstrische Forschungen’’, 1872. (Erlanger
Programm] English translation in the New York Mathematical Society Bulletin, voi. 2 (1893), pages 215-249.

4. Kline, Morris, Mathematical Thought from Ancient to Modern Times, Oxford University Press, New
York, 1972.

5. Ostrom, T. G., “‘Finite Transiation Planes. an Exposition’’, Aequationes Math., 15 (1972) #2-3, pages
121-133.

6. Sibley, Thomas Q., ’Equidistance Retations in Geometry and Metric Spaces’”, Boston University Re-
search Butletin, Boston, 1978,

7. Siblay, Thomas Q., *’Equidistance Relations — a new Approach to Geometry’’, a talk given at the Seventh
Annual Mathematics and Statistics Conference, Mismi University, Oxford, Ohio, 1979,

8. Wolff, "“Kreisel’, Elemente der Mathematik, 31 (1976}, #6, pages 141-145.

Received for publication on 16th of October. 1980
25



