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Abstract

This paper classifies all finite edge colored graphs with doubly transitive automorphism
groups. This result generalizes the classification of doubly transitive balanced incomplete
block designs with 4 = 1 and doubly transitive one-factorizations of complete graphs. It also
provides a classification of all doubly transitive symmetric association schemes.

(€1 2003 Elsevier Inc. All rights reserved.

The classification of finite simple groups in the 1980s has led to theorems
classifying a variety of designs and geometric structures. Edge colored graphs
generalize balanced incomplete block designs with 4= 1 and one-factorizations of
complete graphs. This paper classifies the doubly transitive edge colored graphs
(abbreviated 2-t ec-graphs), extending results of Kantor [14] and Cameron and
Korchmaros [8]. The 2-t symmetric graph designs of Cameron [7] when 2 = | match
the 2-1 ec-graphs for which the number of colors equals the number of vertices. Edge
colored graphs are closely related to the rainbows in Aschbacher [2].

Definitions. An edge colored graph (V, C) is a finite set " of vertices and a function
C from the set E of all undirected edges ab, where a#b, onto a non-empty set C(E)
of edge colors. We assume that || =2, where | V| is the number of elements in V. An
automorphism o of (V,C) is a bijection of V' such that for all edges ah and c¢d,
Clab) = C(ed) iff Cla(a)a(h)) = Cla(c)x(d)). An edge colored graph (V,C) is
doubly transitive iff its group of automorphisms A(}V, C) is doubly transitive (2-t)
on V.
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Example 1. For any V' the 2-t ec-graph obtained by setting Cys(ab) = | for all edges
ab is called the monochromatic ec-graph (V',Cy). The 2-t ec-graph obtained
by setting Cy(ab) = ab is called the trivial ec-graph (V,Cr). Then A(V,Cy) =
A(V,Cyr) = Sy, the symmetric group on V.

Example 2. In a balanced incomplete block designs (BIBD) with 4 = 1, vertex set V,
and B the set of blocks, denote by B(a, b) the unique block (line) containing a and b.
The edge colored graph (V,Cg) is derived from this BIBD if Cg(ab) = B(a,b).
Kantor [14] classified all finite 2-t BIBDs with 4= 1, including affine spaces
AG(n, p*) and projective spaces PG(n,p*) over the field of order p*.

Example 3. A one-factorization is an ec-graph where the edges of each color
determine a regular graph of degree one. Cameron and Korchmaros [8] classified all
finite 2-t one-factorizations and Cameron [6] classified the triply transitive (3-t) ones.

Theorem | below classifies the ec-graphs whose automorphism groups are 3-t.

Theorem 1. If (V, C) is a finite doubly transitive edge colored graph and G is a group
acting triply transitively on V. with G A(V, C), then (V,C) is monochromatic or
trivial with |V|=2 or

(i) the doubly transitive one-factorization based on the affine space AG(n,2), where
parallel edges are the same color and |V| = 2", or
(1) the doubly transitive one-factorization in Fig. 1 and

V| =6.

Proof. The case | V| = 2 is obvious. For |V|=3 suppose first that there are adjacent
edges ab and ax such that C(ab) = C(ax). By 3-t for each y e} distinct from a and b,
there is an automorphism fixing ¢ and b and moving x to y. So for all y#a, Clay) =
C(ab). In turn, for all z#y, C(yz) = C(ya) = C(ab), and (V, C) is monochromatic.
We may thus assume that adjacent edges are different colors and there are distinct «,

kl kg

Fig. 1. Different types of lines represent different colors.
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b, x and y such that C(ab) = C(xy) since otherwise (V, C) is the trivial ec-graph. For
each ze I distinct from « and b, there is an automorphism fixing « and b and taking
x to z, so (V,C) is a one-factorization. Cameron [6] showed that the 3-t one-
factorizations are those in (i) and (ii). [J

Example 4. If V7 is a two-dimensional vector space over a field F, {.,-> is a non-
degenerate, symmetric bilinear form on V, and C(ab) = (a—b,a — b}, then (V,C)
is a 2-t ec-graph. This construction does not generalize to higher dimensional finite
spaces because of isotropic elements (see [4]). Any metric space (X, ) becomes an ec-
graph by setting C(ab) = d(a,b), and conversely any finite ec-graph becomes a
metric space by assigning numbers in [1.2] to the colors.

The first two sections of this paper classify 2-t ec-graphs based on their groups of
automorphisms. From the classification of finite simple groups, the finite 2-t groups
split into two large collections and one other family. The first collection consists of
groups with a 2-t simple subgroup. The 2-t subgroups of some affine group form the
second collection. The remaining family consists of groups containing PI'L(2,8) =
2G1(3) acting on a set with 28 elements (see [14]). Theorem 6, the main result of
Section 1, classifies all 2-t ec-graphs whose groups of automorphisms contain some
2-t simple group. In essence, these 2-t ec-graphs are found in Examples 1-3 above
and 5-11 below. Theorem 7, which closes Section 1, classifies the 2-t ec-graphs whose
automorphism groups contain PI'L(2, 8). Section 2 classifies, to the extent practical,
the 2-t ec-graphs whose groups of automorphisms are 2-t subgroups of some affine
group. This collection of graphs, which includes those of Example 4, has a far more
extensive and complicated structure than those in Section I, making an explicit
counterpart to Theorems 6 and 7 infeasible. Examples 12 and 13 give general
constructions for all such 2-1 ec-graphs. Section 3 classifies regular 2-t ec-graphs, as
in Examples 3 and 4, where the edges of each color form a regular graph on V. It
also classifies 2-t point color symmetric graphs and 2-t symmetric association
schemes.

1. Non-affine automorphism groups

Here we consider only 2-t ec-graphs whose groups of automorphisms contain a
finite simple group or PI'L(2,8) acting on a set of 28 elements. We present the
remaining examples of 2-t ec-graphs with non-affine automorphism groups and
lemmas providing the means of determining all of the possibilities. Lemma 2 matches
possible 2-t ec-graphs with appropriate subgroups of a 2-t group. Lemma 3 lets us
use only the finite simple groups and PI'L(2,8), rather than all groups containing
them.

Example 5. For V = PG(n,2), each line has three points incident with it
Define C(£) =V and C(ab) = ¢ iff ceBla,b), ¢#a and c¢#b (see Fig 2). Then
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A(V,C)=PGL(n+1,2) and (V,C) is a 2-t ec-graph as well as a 2-t symmetric
graph design with 4 =1 of Cameron [7]. This construction also applies to the 15-
point ec-graph with A(V, C) = 4.

Definition. For edge colored graphs (V,C) and (V,C"), (V,C) is weaker than
(V,C"), written (V,C)=<(V, "), iff there is a surjection y : C(E)— C'(E) such that
for all ab, y(Clab)) = C'(ab).

Example 6. Let ¥ = PG(n, 3), Bits set of lines (blocks), and (¥, Cy) the 2-t ec-graph
derived from this BIBD with 1= 1. We define a weaker 2-t ec-graph (V,C) by
splitting the six same-colored edges from each line into three pairs as in Fig. 3. More
precisely, C(E) = B x {1,2,3} and for each line / in B with any labeling /; of its
points, for i€ {0, 1,2, 3}, define C(,/;) = (/,i) and C(/i;) = (I, k), where i, j and k are
distinct elements in {1,2,3}. Then A(V,C) = A(V, Cp) and (V, C) is a 2-t ec-graph.

Definition. Two edge colored graphs (V, C) and (V', (") are isomorphic iff there are
bijections ff: V— V" and y: C(E)— C'(£') such that for all a and b, y(C(ab)) =
C'(Bla)fi(b)).

e

g ® i
f g

Fig. 2. The vertex ¢ is on the lines on @ and b, on ¢ and e, and on f and g. Thus C(ab) = Clde) =
¢

(fyg) = e
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Fig. 3.
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Table 1

1 2 3 4 5
0 1 2 3 4 5
I 1 5 4 2 3
2 2 5 1 3 4
3 3 4 1 5 2
4 4 2 3 5 1
3 5 3 4 2 1

Example 7. Let V' = PG(n,S), Bits set of lines, and (V, Cy) the 2-t ec-graph derived
from this BIBD with 4 = 1. Analogously to Example 6 we split each color of Cp into
five colors with each line colored in (V/,C) as in Fig. |. More precisely, C(E) =
B x{1,2,3,4,5}. Fix a line k and label its points k;, where i€ {0,1,2,3,4,5}. For
each /e B, there is e PGL(n+ 1, 5) mapping k to /. Because PGL(n+ 1,5)is 3-ton/
the choice of o is immaterial up to isomorphism. Label the points of / as [; = a«(k;). If
we define C(/il;) = (I.i+j), where i % j is given by Table 1, A(V,C) = A(V. Cg), and
(V,C) is a 2-t ec-graph.

Example 8. The constructions of Examples 6 and 7 apply to two BIBDs of unitals
over the field Z3 and one BIBD over the field Zs, yielding three more 2-t ec-graphs,
whose automorphism groups are Us(3), PI'L(2,8), and U;(5), respectively. Theorem
7 considers PI'L(2,8), which is not a simple group.

Example 9. Let X be the 2n-dimensional vector space over Z» and G = PSp(2n, 2),
for n>2. We follow the notation in Dixon and Mortimer [11, pp. 245-248]. Now G is
2-t on the subsets 2 and Q@ of X. For Q' either @ or @ and 0,, 0,2 with
6, +# 0, define C(6,0,) = a + b. The transvection switching 0, and 0 is in A(2', C).
Since the transvections generate G both (2, C) and (@, C) are 2-t ec-graphs.

Definitions. For a color ¢, a e-chromomorphism « is an automorphism such that for
every edge ab, if C(ab) = ¢, then C(k(a)x(h)) = ¢; that is, i preserves the color
¢, although not necessarily other colors. For a given ¢ the subgroup of all
c-chromomorphisms is denoted K(V, C,¢), abbreviated K(c). If we are focusing on
the color of an edge ab, we write K(V, C, C(ab)) or K(C(abh)).

Lemma 2 below is a key to using the groups K(¢) to generate 2-t ec-graphs. Recall
Gy, p 1s the stabilizer in G of the edge ab. In Lemma 2 the lattice of subgroups K with
AV, C) o SK<A(V, C) gives a corresponding lattice of 2-t ec-graphs. The trivial
and monochromatic colorings correspond to A(V. C),,,, and A(V, C), respectively.
Note that we may use any edge ab because a 2-t group is transitive on the edges.

a.b

Lemma 2. Let G be a doubly transitive group acting on a finite set V and ab
any edge. Then for each subgroup K such that Gy, <K<G there is, up to
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orbit is {x}, which we assume. Then (V, Cy) < (V, C), where (V, Cy) is derived
from the BIBD PG(3,2). Since e,, =2 in (¥, C) any two same colored lines
are disjoint. Given this disjointness and the 35 colors of (V,Cp), if
(V,C)#(V,Cg), then (V,C) would have 7 colors with five lines per color.
Suppose that B(a,b)# B(i,j) and C(ab) = C(ij). The orbit of ij under G,
determines the lines colored C(ab). The orbit of these lines under G,
determines the seven colors of (7, C). However, direct computation reveals
that no automorphism of (V,C) switches ¢ and b, showing (V,C) is not
a 2-t ec-graph. Thus (V,C) is either monochromatic or derived from the

BIBD.

(ifi) Suppose that G = HS<A(V,C) and |F|=176. As in (i), (V,C) is
monochromatic.

(iv) Suppose that G = Co;<A(V,C) and |V|=276. As in (i), (V,C) is
monochromatic.

(v) Suppose that G = Sz(g)<A(V,C), where ¢ =2""" and a=1, and |V|=
g> + 1. As in (i), (V, C) is monochromatic (see [11,19, p. 250]).

(vi) Suppose that G = PSL(2,¢)<A(V,C), where ¢ is a power of a prime, and
|[V| =g+ 1. Asin (i), (¥, C) is monochromatic.

(vil) Suppose that G = PSL(n+1,¢)<A(V,C), where ¢ is a power of a prime,
n=2,and |V| =37, ¢ If x is not incident with / = B(a,b), as in (i), (V, C) is
monochromatic. Now suppose that x is incident with /. Because G is 3-t on /,
Theorem 1 forces / to be monochromatic. Thus (V,Cg)=(V,C), where
(V, Cg) is derived from PG(n,q). If (V,C) = (V, Cp), we are done. Otherwise
there must be some line B(u,v) with /n B(u,v) = 0 such that C(uv) = C(ab).
Then v is not in the plane determined by a, b and u, so as in (i), (V,C) is
monochromatic or derived from a BIBD.

(viii) Suppose that G = PSp(2n,2)<A(V,C), where n=3, and |V|=2""1+4+2"1
As in (i), (¥, C) is monochromatic.

(ix) Suppose that G = Us(q)<A(V, C), where ¢ is a power of a prime and ¢>2,
and |V| = ¢’ + 1. As in (i), (V, C) is monochromatic (see [1,12,16]).

(x) Suppose that G =>Gy(q)<A(V,C), where g =3*"" and ¢>3, and |V|=
¢' + 1. As in (i), (V, C) is monochromatic (see [15]). [

Table 2 summarizes the classification in Theorem 6, abbreviating “g is a power of
a prime” by “g = p™”, “monochromatic” by “mono”, and “trivial” by “tr.”

Theorem 6. If (V,C) is a finite 2-t ec-graph and G is a simple group acting doubly
transitively on V with G A(V, C), then either G = Sy and (V, C) is monochromatic
or trivial or else one of the following cases occurs:

(i) G is a projective, unitary, or Ree group and (V, C) is the 2-t ec-graph resulting
from the unique BIBD on V with A =1 determined by G;
(ii) (V, C) is a one-factorization and G = PSL(2,p) for p =3, 5, 7 or 11;
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Table 2

Group Size of V' All finite 2-t ec-graphs
PSL(2,11) 11 mono, tr

Ay 15 mono, tr, BIBD, Ex. 5
HS 176 mono, tr

Cos 276 mono. tr

Sz(g), g = 2% az1 g +1 mono, tr

PSL(2.q), g=p" g+ 1 mono, tr, Ex. 3, 11
PSL(n+1,q), g=p" i i mono, tr, BIBD, Ex. 5, 6. 7
PSp(2n,2), n=3 PRI TR mono, tr, Ex. 9

Us(g). q#2. g =p" ¢ +1 mono, tr, BIBD, Ex. 8, 10
2Galq). q=>3, g = 3! g+ 1 mono, tr, BIBD, Ex. §

(i) G = Ay and (V,C) is one of the 2-t ec-graphs in Example 5;

(iv) G = PSL(n,p) for p=2,3 or 5 and (V,C) is a 2-t ec-graph in a families in
Example 5, 6, or T,

(v) G=Us(3) or G= Us(5) and (V,C) is one of the 2-t ec-graphs in Example 8
or 10;

(vi) G= PSp(2m.2) and (V,C) is a 2-t ec-graph in one of the two families in
Example 9;

(vil) G = PSL(2,9) and (V,C) is the 2-t ec-graph in Example 11.

Proof. Assume that ¢,, = | for any edge ab and there are distinct edges ab and
xy with Clab) = C(xy), since otherwise (7, C) is classified in Theorem 5 or is the
trivial graph. From Lemma 4 e =k,,/2, ¢ divides |E|, and e<|V|/2. Further,
e = |VI|/2iff (V,C) is a one-factorization. The orbit of the edge xy under the group
G, determines ¢. If x and y are in the same orbit of size r, the size of the orbit of xy is
r/2 to ensure ¢, = ey, = |. Similarly if x and y are in different orbits, these orbits
must be the same size r.

(i) Suppose that G = PSL(2,11)< A(V,C) and |V| = I1. The orbit of x under
G, has three or six elements. Only » = 6 is possible, but ¢ = | 4 r/2 = 4 does
not divide |E|. Hence (V, C) is monochromatic or trivial.

(i) Suppose that G = A;<A(V,C) and |V]| = 15. As in (i) and Theorem 5(ii)
(1, C) is monochromatic, trivial. derived from a BIBD, or Example 5.

(iii) Suppose that G = HS<A(V,C) and |V| = 176. As in (i) (V, C) is monochro-
matic or trivial (see [8,17]).

(iv) Suppose that G = Co;<A(V,C) and |[V]|=276. As in (1) (V,C) is
monochromatic or trivial (see [8]).

(v) Suppose that G = Sz(¢)<A(V,C) and |V|=¢*+ 1. As in Theorem 5(v)
(¥, C) is monochromatic or trivial.

(vi) Suppose that G = PSL(2,q). where ¢ = p", for some prime p, and |V| = ¢+ 1.
Assume that V' = PG(l,q). If p=2, G is 3-t and |V]|=2"+1 is odd,
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(vii)

(viii)

(ix)

(x)

In
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contradicting Theorem 1. If (V,C) is a one-factorization, then
ge{3,5,7,11} by Cameron and Korchmaros [8]. Combinatorial restrictions
eliminate all other options except ¢ =19, fulfilled in Example 11.
Because PGL(2,9) is 3-t on PG(1,9), any two such 2-t ec-graphs are
isomorphic. Hence (7, ') is monochromatic, trivial., a one-factorization, or
Example 11.

Suppose that G = PSL(n + 1,¢), where ¢ = p", for p a prime, n=2. and | V| =
3o ¢- Assume that V = PG(n,q). Then G, leaves the line B(a,b) = B
stable. The orbit of x under G is either V' /B or B/{a,b}. Suppose first that
this orbit is V/B. If B B(x,y) is empty. then (V, C) is a one-factorization,
contradicting Cameron and Korchmaros [8]. So assume that {z} =
B B(x,y). Then B has just three points because G is 3-t on each line, giving
us Example 5. Finally suppose that the orbit of x under G, is B/{a,h}. Hence
we have a one-factorization of B, and G is 3-t on B. By Cameron and
Korchmaros [8] and Cameron [6] |B| is either 4, 6, or 8. The values of 4 and 6
correspond to Examples 6 and 7. If |B| =8, then G would act on B as
PGL(2,7). However, the 3-t ec-graph on eight vertices has A(V,C)=
AGL(3,2). Thus (¥, C) is monochromatic, trivial, derived from a BIBD, or
one of Examples 5, 6, and 7.

Suppose that G = PSp(2n,2)<A(V,C), n=3 and |[V|=2""142""1 Argu-
ments similar to previous ones but somewhat involved force (V,C) to be
monochromatic, trivial, or Example 9.

Suppose that G = Us(g)<A(V, C), where ¢ is a power of a prime, g#2, and
|[V|=4¢*+ 1. As in (i) and Theorem 5(ix), (¥, C) is monochromatic, trivial,
Example 8, or Example 10 (see [1; 10, p.14; 12: 16]).

Suppose that G = 2Gy(q) < A(V, C), where ¢ = 3%*', ¢>3, and |V]| = ¢* + 1.
As in Theorem 35(x), (V/,C) is monochromatic, trivial, or derived from a
BIBD. O

addition to the simple groups and the affine family of groups. the 2-t groups

include groups containing PI'L(2,8), acting on a set of 28 unitals, whose 2-t ec-
graphs are classified in Theorem 7.

Theorem 7. If (V,C) is a 2-t ec-graph, where V is the ser of unitals for G =
PIrL(2,8) =2Gy(3)<A(V,C), then

(V,C) is monochromatic;

(V,C) is trivial,

(V, C) is derived from the BIBD on V with i = 1;

(V, C) is a one-factorization on 28 vertices;,

(V,C) has, for any color ¢, K(V,C,¢)=PGL(2,8);

(V, Q) is the meet of possibilities (iii) and (iv) (Example 8); or
(V,C) is the join of possibilities (iii) and (iv).
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Proof. For a#bin V we find all K with G, <K <G. Let J = PGL(2,8), a simple
normal subgroup of G with Gy, <J. The subgroups K such that Gy, ,; <K <J are
Gapy, J, AGL(2,8), and T, the eight translations of AGL(2,8) (see [10.6]). These
correspond, respectively, to the possibilities (ii), (v). (iv), and (vi) in the theorem.
There are at most four more subgroups of PI'L(2,8) whose intersections with J are
one of these four subgroups. Three of these potential subgroups actually exist:
Prr(2,8), ArL(2,8) and the group B for the unique BIBD with . =1 (see [14]).
These correspond, respectively, to the possibilities (i), (vii)., and (iii) in the theorem.
The fourth would have index 2 in B. However, that would entail partitioning the six
edges of each line in the BIBD into two sets of three edges. which is not 2-t. [

Remark. The 2-1 ec-graph in Theorem 7 (vii) is a 3-factorization of the complete
graph of order 28.

2. The affine case

Let V' be an n-dimensional vector space over a finite field F with |F| = p* and
G=A(V,C)SATL(n,p"). Now AI'L(n,p*)< AGL(nk.p), so A(V,C)<AGL(d,p).
d = nk. In the non-affine case, Lemma 3 let us use only the minimal 2-transitive
subgroups because all the related groups contain these minimal groups. Unfortu-
nately. in the affine case the situation is reversed: A(V, C) is a subgroup of the large
group, AGL(d,p). Further, as Table 3 illustrates, the often large number of non-
isomorphic 2-t ec-graphs for such groups makes a complete classification infeasible.
This situation contrasts with the relatively few non-affine examples in Table 3. (The
non-simple group PI'L(2,8) accounts for most of the examples when |V| = 28.)

We can describe the chromomorphism subgroups in the affine case, although the
case p =2 is more complicated than other primes. Because all chromomorphism
subgroups K(c¢) are conjugate, when p>2 we choose ¢ = C(—wv) for a non-zero
vector v, and when p = 2 we choose ¢ = C(0v). For p>2 Theorem 14 shows that a
chromomorphism subgroup K(C(—wvv) = K is the semidirect product of its subgroup
T of “translations™ and its subgroup K fixing 0. Thus the construction in Example
12 gives all 2-t ec-graphs for p>2, providing a suitable classification. The “central
symmetry” switching each x with —x plays a special role when p>2, so we reserve
the letter o for it. When p = 2 Example 13 gives a family of 2-t ec-graphs besides
those of Example 12, showing that the analog of Theorem 14 fails. Nevertheless,
when p = 2 we can construct all 2-t ec-graphs from Examples 12 and 13.

Table 3

The number of non-isomorphic 2-1 ec-graphs and non-affine 2-t ec-graphs for selected sizes of V'
Sizeof V 7 8 9 13 16 25 27 28 31 49 64 81
Non-isom. 6 4 8 10 10 =18 8 10 12 =20 =19 =28
Not affine 4 2 2 4 2 2 2 10 6 2 2 2
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Definitions and notations. Let G = A(V,C) be a 2-t subgroup of AGL(d,p). For
we V define the translation t,, by #,(x) = x+w, and T = {r, : we V'}. Denote the
non-zero elements of V7 by V. For p>2 and ve " suppose that G;_, ) <K<G.
Define Tx = T K, Vi, ={w: t,€Tx}, Ko = {ge Gy : IteT : tge K}, and Vj to be
the subspace generated by {g(v) : geKy}. For p>2 define 6 AGL(d,p) by a(x) =
—x for all xe V. For p = 2, replace G,_,;; with Gy,}.

Lemma 8. T is normal in G, and Ty is normal in K; Every aeG can be written
uniquely as o = tg, where te T and ge Gy; Vy, is a subspace of V; Ky is a subgroup
of Gy with Ko<Ky; If veVy,, then Ve<Vr.; If geky, then g(Vr,) = Vr, and
9(Vg) = Vi

Proof. All of these results are well known or easily shown. [

Example 12. Firstlet p>2, ve V', and G be a 2-t subgroup of AGL(d, p). By Lemma
20f G, <Ky<Gy, then (V,Cy,) is a 2-t ec-graph. Let Vg be the subspace
generated by {g(v) : geKy}. Let V' be any subspace of V7 such that for all ge K,
g(V')=V"and T' = {1, : we V'}. Then T'K;, = K is a subgroup of G and (V, Cx) is
a 2-1 ec-graph. For example, V' = V" and V' = {0} are always stable for any K. If
V' =V, then K = TK, gives a regular 2-t ec-graph; that is, each color of (V, Cg) 1s a
regular graph. In general, the groups G and K determine which proper subspaces
are stable. For any stable V' either Vg <V’ or Vg V' = {0}. In the first case, the
graph is related to the BIBD where Vg is a block (see Figs. 4a and b).

For p =2 every chromomorphism group K(V,C,C(0v)) =K contains the
translations #,,,. such that C(uw) = C(0v). Thus, Vg <V'. If T' = {1, : ueV"'} and
for all ge Ky, g(V') = V', the semidirect product K = T'K, is a subgroup with
G < K. Then for any 2-t group G and ve V" this construction gives a 2-t ec-graph.

For p>2 Theorem 14 below shows that K = Tk Ky, showing that Example 12
describes all such 2-t ec-graphs. Lemmas 10-13 consider the types of 2-t subgroups
of AGL(d,p), given in Kantor [14].

(a)
e o 8 e @
e o e o e
® ° [ ] L] ®
e e o e °
0_o ¥ v

Fig. 4. (a) ve V', (b) v¢ V',
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Lemma 9. Suppose that p>2, G = A(V,C) is doubly transitive, G<SAGL(d,p),
ve V', Gi_,WSK<Gand ceG. Then K = TgK,.

Proof. Note that oG, <K, ¢ commutes with all ge Gy and for 1,eT, ot,0 =

t . For ke K, write k = t,g4 with #,€ T and ge G,. Then J(l,,g}a(r,,g)_l =t eX.
Because p is odd 1,eK. Thus g =1t ,(1,9)€K, and so t,€ Tx and ge K,. [

Lemma 10. Suppose G =A(V,C) is a doubly transitive group with
ASL(n, ¢")<G<AI'L(n,q"), |V|=¢", n=2 and p>2. If ve V" and G|, ,, <K<G,
then K = Ty K.

Proof. If n is even, then the determinant of ¢ is 1. Thus se ASL(n.q)<G and
K = T]\'K“.

Let n be odd and ke K = K(C(—vv)). For k = tg with re T and g€ G, we know
geKy. We need to show that re Ty, for then g =1t '(t9)eKn Ky = K;. Let u =
k(0) = #(0) and w = g(v). The action of automorphisms on the subspace {u, v, w>
forces te Ty. O

Lemma 11. If G = A(V, C) is a doubly transitive subgroup of AI'L(1,p") and p>2,
then oe (.

Proof. If V' is the field of order p*, then I'y = AT'L(1,p"), is a semidirect product of
the cyclic groups ¥ and Aui( V). For a a generator of V" and f§ the Frobenius map
(B(x) = x"), the elements a'f¥/ of I'y satisfy (a'f/)(a* ") = o'/ (¢* ). Because G is

2-t, there is afff € Gy <I'y mapping 1 to a. Now (a, ;’f")”r = Hj’:,l B (a)e V", which we

B o A L ) )
call @*. Then z=YY"1pi = (iﬁ) has even order in Z,_,. Since ¢ is the only

element of order 2 in V* we have se {a > <G. O

Lemma 12. Suppose that G = A(V, C) is a doubly transitive subgroup of AGL(d,p),
p>2,veV”, G, <K<G, and Tx = {ty}. Then K = K,.

Proof. By the conjugacy of all chromomorphism subgroups, for all a,beV,
TnK(C(ab)) = {ty}. For any edge ab, the p translates (« + w)(b +w) of ab all
have different colors, so the number of colors is a multiple of p?. Let Q. =
{x:dy:C(xy) = C(ab)}. By Lemma 4 the number of edges per color divides
(p —1)/2 and so |Q,| divides p? — 1.

Let S, = ZV\,EQ‘MA‘. Because | Q| is relatively prime to p, there is a unique ¢ € V
such that |Qu|cus = Su,. For ke K(C(ab)), Ouiuyeip) = Qun and so K(C(ab)) fixes c,p.
Let & =t{a) and b =1t(h), where #(x)=x—c,. Then S,y = Z‘,Ew_!(x) =
S veo, (X = €an) = Sup — |Qulcar = 0. Hence K(C(d'b))< Gy, implying b = —d'.
For any ve V* by conjugacy K(C(—wv)) = Ky<G,. O
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Lemma 13. Suppose that G = A(V, C) is a doubly transitive subgroup of AGL(2,p),
where p =5,7,11,19,23.29, or 59 and SL(2,3) <1Gy or SL(2,5) <1 Gy. For ve V" if
G{ v <K =K(C(—w))<G, then K = TgK,.

Proof. Since d = 2 either T} = {1}, Tx = T, or Tg is one-dimensional. If T} =
{to}, use Lemma 12. If T = T, every subgroup K with 7'< K satisfies K = TK;. We
split the third case into two subcases: 1, € Ty <K = K(—wvv) and 7, ¢ Tx. Because all
chromomorphism subgroups are conjugate we may choose v = (1, —1) in the first
subcase and v = (1,1) in the second. By Dixon and Mortimer [I1, p. 239], G
contains

o 1
H= 1 0

In either case pe G ., <Ky In the first subcase we have K = Tx Ko, and so
K = TgKy. In the second subcase we have 6e G, so we can use Lemma 9. [

Theorem 14. [f (V, C) is a 2-t ec-graph with A(V, CY< AGL(d, p) for p=>2,ve V" and
K = K(C(—vv)), then K = T¢Ky.

Proof. We use the classification in Kantor [14] of 2-t subgroups of AGL(d,p) and
the previous lemmas.

(i) For GEKAIL(1,p") use Lemmas 11 and 9.
(i) For ASL(n,p")< G, where n=2, use Lemma 10.
(iii) For Sp(n,p?) <G, use Lemma 9 because o€ Sp(n, p?).
(iv) For SL(2,3)<1Gy or SL(2,5)<1Gy and |V|=p*,p=15,7, 11,19, 23, 29 or 59,
use Lemma 13.
(v) By Aschbacher [3] the three remaining groups with [V| =3 d =4 or d = 6
contain &, so use Lemma 9. [

The classification of 2-t affine groups in Kantor [14], Theorem 14, and Example 12
provides a method, even if burdensome, to construct any affine 2-t ec-graph
when p>2. Given G a 2-t subgroup of AGL(d,p) and any ve V", find all Kj
such that Gy, ,; <K;<Gy, all subgroups 7" of translations, and all subspaces
left stable by K = T'K,. From G, K;,, and 7’ Example 12 gives any 2-t affine
ec-graph.

We turn now to the case p = 2 which admits the more complicated construction in
Example 13.

Example 13. Let V' be the field of order 2¥ and F the subfield of order 2%, where
| <k,n. The elements of G = AGL(1,2*") can be written as g,,, where g,,(x)'=
ax+band ae V", be V. Note that 1, = g, and Gy, = {t0, 1 }. Let w generate V",
j=1(2"—1)/(2* — 1) and u = w/. Then u generates F*. Let K = K(V,C,C(01)) be
the subgroup generated by g,, and the translations {r,: geF} = Tx. Then
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(a) (b)

Fig. 5. (a) Four parallel lines in the BIBD with 16 vertices and 4 vertices per line. (b) Coloring of the edges
of the four lines from (a) following the construction in Example 13.

Gyo.1) < Tx < K. The elements of K are of the form g,, -, ,, where ge F. Thus, K is not
the semidirect product TxKy. If L = Tx Ky = {g,., : g€ F}, then |K| = |L|. Further,
(V,Cy) is derived from the BIBD in which F is one line. Both (¥, Cx) and (V, Cy)
are 2-t ec-graphs with the same translations in K(Cg (ab)) and K(Cy(ab)), but edges
in one line of (V, C;) are split up among translates of those edges to form (77, Cg).
Fig. 5a and b illustrate this situation.

Example 13 complicates finding all 2-1 ec-graphs when case p = 2. Fortunately, if
K satisfies G,y <K <G, where G is a 2-t subgroup of AGL(d.2) and ve V", then
L = Tk K, satisfies |[K| = |L| and KL = TxKy, which we call J. Lemma & ensures
that Gy, <J<L. Clearly, (V,Cx), (V,C.) and (V,C,) are 2-t ec-graphs with
(V,Cp)=(V,Cg)and (V,Cy)<(V,CyL). Further, Ty = T, = T. The set of edges of
one color for either (V,Ck) or (V,Cr) is a union of |Ky|/|Ky| families of same
colored edges of (V,C,). As in Example 13, the families forming one color in
(V,Cg) are translates of the families forming one color in (V,C.). The
constructions of Example 12 and this generalization of Example 13 are the only
ones possible when p = 2.

3. Regular edge colored graphs

As mentioned in Example 4, we can convert a metric space to an ec-graph.
Regular ec-graphs correspond to metric spaces in which the configuration of
distances from any point to other points is independent of the point. A geometrically
interesting and more restricted family of metric spaces are those with transitive
isometry groups. as defined below. We classify the 2-t ec-graphs corresponding to
both of these situations as well as symmetric association schemes.

Definition. An edge colored graph (7, C) is regular iff for each color ¢, the edges ab
such that C(ab) = ¢ form a regular graph on V.

Theorem 15. If (V,C) is a finite regular 2-t ec-graph, then either (V,C) is
monochromatic; (V,C) is a one-factorization; |V| =28 and A(V,C) = PI'L(2,8);
or |V =p?, A(V,C)<AGL(d,p), and for any edge ab, T<K(V,C, ab).
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Proof. We consider three cases: A(),C) contains a simple 2-t group. it
contains PI'L(2,8), or it is a subgroup of some affine group AGL(d,p). In the
first case Theorem 6 shows that only monochromatic ec-graphs and one-
factorizations are regular. For the second case, parts (i), (iv), (v), and (vii) of
Theorem 7 list the four regular 2-t ec-graphs. Finally, for the third case suppose
A(V,C)<AGL(d,p) and |V| = p?. First let p>2. In order that (¥, C) be regular, the
number of edges of any color must be a multiple of p?. For K = K(V,C, C(—wv)),
the number of edges of the color C(—vv) is [K|/|G{ .| = |Tk||Kol/|G| |- Now
(V,Ck,) is a 2-t ec-graph with |Ky|/|G,_, .| edges of color C,(—vv). In Lemma 12
we showed that |Ky|/
A similar argument holds when p =2 once we substitute K, for K, and G,
for G;_,y. O

G .| is relatively prime to p?. Hence |Tx| = p’ and Tx = T.

Example 14. Let V' be the d-dimensional vector space over Z,, G=AGL(d,p). ab
any edge in V and H = TGy, (or TG, if p = 2). Now T is the smallest transitive
subgroup of G, and so H is the smallest transitive subgroup containing G, s, (or Gy
if p = 2). Thus all regular 2-t ec-graphs (V, C) satisfy (V,Cpy)=(V, C).

Remark. 7" and V' are isomorphic as groups, so (V,Cy) corresponds to the
equidistance relation on V defined in Sibley [18].

From Example 14 the regular affine 2-t ec-graphs correspond to the subgroups K
such that TG, , ,, <K <G (or TGy, <K <G, if p = 2 ). What more can we say about
these graphs? The number of colors of (V/, C') must divide the number of colors of
(V,Cy) in Example 14, which is d{—' if p>2and p? — 1 if p = 2. Example 15 shows
that all such divisors are possible. Unfortunately., Example 16 shows that there are
non-isomorphic 2-t ec-graphs for some divisors.

Example 15. Let V' be the field of order p! and G = AGL(1.p?). The cyclic
group Gy = V* has p? — 1 elements. For each divisor j of p? — 1 there is a unique
subgroup J; of V" containing j elements. If p>2, assume that j is an even divisor;
if p=2, j can be any divisor. If we use K; = TJ; in Lemma 2, then (V,C;)
has (|V| — 1)/; colors.

Example 16. Let V' be the two-dimensional vector space over Zs. There are non-
isomorphic regular 2-t ec-graphs (¥, C) and (¥, ") with C(E) = C'(E) = {0, 1,3}.
Call the six classes of parallel lines B,,, for me Zsu { oo }, where the lines y = mx + ¢,
for m, ce Z5 are in B, and the lines x = ¢ are in B, . Define

0 if B((l, h)EBnUB;,
Clab) =< 1 if Bla,b)eB|uB,
3 if Bla,b)eByuB;
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and

0 if Bla,h)eByuUB,
C'(ab) =< 1 if Bla,b)eByw B,
3 if Bla,b)eByu By

Since A(V, C) has 4800 elements and A(V. ") has only 2400 elements (7, C) and
(¥, C") are not isomorphic. (For each color ¢ some ¢-chromomorphisms switch the
other two colors, so K(V,C,¢) and K(V, ', ¢) each have index 6 in 4A(},C) and
A(V, "), respectively.)

Theorem 16 classifies the 2-t ec-graphs with a transitive group of isometries, a
stronger condition than regular.

Definitions. An automorphism p of (V, C) is an isometry iff C{ab) = C(p(a)p(h))
for all edges ab. Denote the group of isometries by /(V, C). An ec-graph (V, C) is
point color symmetric iff I(V, C) is transitive on ¥ and A(V, C) is transitive on the
colors C(E). (See Chen and Teh [9] for more on point color symmetric graphs.)

Theorem 16. A 2-t ec-graph is point color symmetric iff it is a doubly transitive
symmetric association scheme iff it monochromatic or regular and affine or item (v) of
Theorem 7.

Proof. A 2-t group A(V,C) is transitive on C(E). If I(V,C) is transitive, then
(V,C) is regular. Among the 2-t ec-graphs in Theorem 15 only those listed in this
theorem have transitive isometry groups, which are thus the point color symmetric
ones. By definition a symmetric association scheme is a regular ec-graph. Among the
2-t ec-graphs in Theorem 15 only those listed in this theorem satisfy the definition of
a symmetric association scheme. (See Bannai and Ito [5, p. 52].) O
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